

ASCO™ MINIATURE SOLENOID VALVES

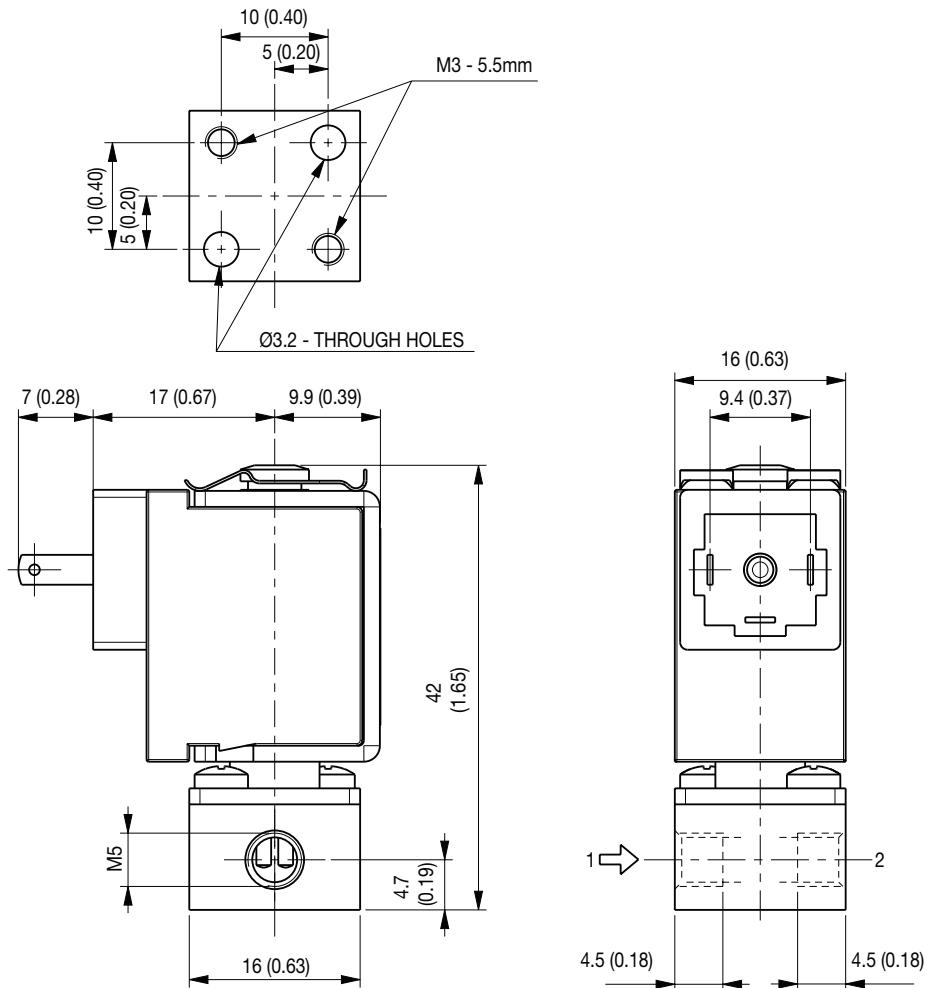
GENERAL SERVICE VALVES, 2-WAY NORMALLY CLOSED - PROPORTIONAL INLINE

- Series 226 proportional valves are designed to proportionally control the flow of neutral and aggressive liquids and gases by varying the electrical input signal to the coil
- Optional manual set-screw version available to optimize flow rate / electrical signal
- Reduced heat transfer between control mechanism and fluid make them ideal for use with heat-sensitive reagents and biological samples
- Small form-factor saves space in OEM instruments and are well-suited for portable and hand-held field devices
- Multiple electrical connection options and a rotatable coil create greater flexibility in OEM instrument design and serviceability
- Various connections are available so that the valve can easily be integrated into virtually any fluidic path
- Meets all relevant CE directives, and is RoHS compliant
- Typical applications include:
 - Dental Equipment
 - Gas Chromatography
 - Industrial Analyzers
 - Respiratory Devices

Fluids*	Temperature Range	Seal Materials*
Liquids and gases	-10°C +90°C (14°F to 194°F)	NBR

* Ensure that the compatibility of the materials in contact with the fluids is verified.

General Valve Information	
Body	Brass
Internal components	Stainless steel
Seat	Brass
Core tube	Stainless steel
Maximum allowable pressure (PS)	16 bar (232 psi)
Max viscosity	3°E (22 cStokes or mm ² /s)


Electrical Characteristics	
Continuous duty	ED 100%
Encapsulation material	PA (Polyamide) fiberglass reinforced
Insulation class	F (155°C)
Ambient temperature	-10°C to 60°C (14°F to 140°F)
Electric connection ¹	DIN 46340
Protection degree	IP 65 (EN 60529) with micro plug connector
Voltages ²	12 VDC, 24 VDC (-5%/+10%)

¹ leaded coil on request

² other voltages on request.

Specifications																		
Port size ISO-UNI 4534	Orifice Size (mm)	Operating Pressure bar (psi)		Flow Coefficient		Power Rating			Seals	Series and Type	Voltage							
		Min	Max	Kv (m ³ /h)	Cv	AC. (VA)		DC. (W)		Valve	12V DC	24V DC						
						Inrush	Holding											
M5	1.6	0.5 (7.25)	5 (72.5)	0.04	0.05	-	-	4	NBR	H226A546S0A00	F3	-						
		0.2 (2.90)								H226A546S0A00	-	F1						
		3 (43.5)								H226A547S0A00	F3	-						
		0.2 (2.90)								H226A547S0A00	-	F1						
		3 (43.5)								H226A545S0A00	F3	-						
		0.2 (2.90)								H226A545S0A00	-	F1						

Dimensions: mm (inches)

Installation

- Solenoid valve can be mounted in any position; vertical with coil upwards preferred.

NOTE:

- These micro-solenoid valves are not suitable for stagnating media subject to vaporization which deposit solid, calcareous, incrusting residues or similar.
- Seal: NBR = Nitrile butylene elastomer. Other options available on request
- It is necessary to keep the current circulating in the coil constant, so as to maintain the solenoid valve in any pre-determined position. In case the solenoid valve is energised by voltage variation, it has to be considered that the resistance of winding increases because of the continued energizing and consequently the power decreases. Therefore, it is necessary to compensate such power decrease by increasing the voltage to re-establish the initial current value.