

AVENTICS™

580 IO-Link™ Technical Manual

Conditions for use of this product

(1) Aventics Manifold ("the PRODUCT") shall be used in conditions;

- i) Where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident.
- ii) Where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the case of any problem, fault or failure occurring in the PRODUCT.

(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries.

Aventics shall have no responsibility or liability including but not limited to any and all responsibility or liability based on contract, warranty, tort, product liability for any injury or death to persons, loss or damage to property caused by the product that are operated or used in application not intended or excluded by instructions, precautions or warnings contained in Aventics, Technical, User, Instruction, Safety manuals or bulletins.

Safety precautions

Before using this product, please read this manual and the relevant manuals carefully and pay attention to safety and product application. The following symbols are used in the manual to identify important safety, installation and application information.

Caution symbol indicates a possible hazard which may cause injury or equipment damage.

Note symbol indicates important information regarding equipment installation and setup.

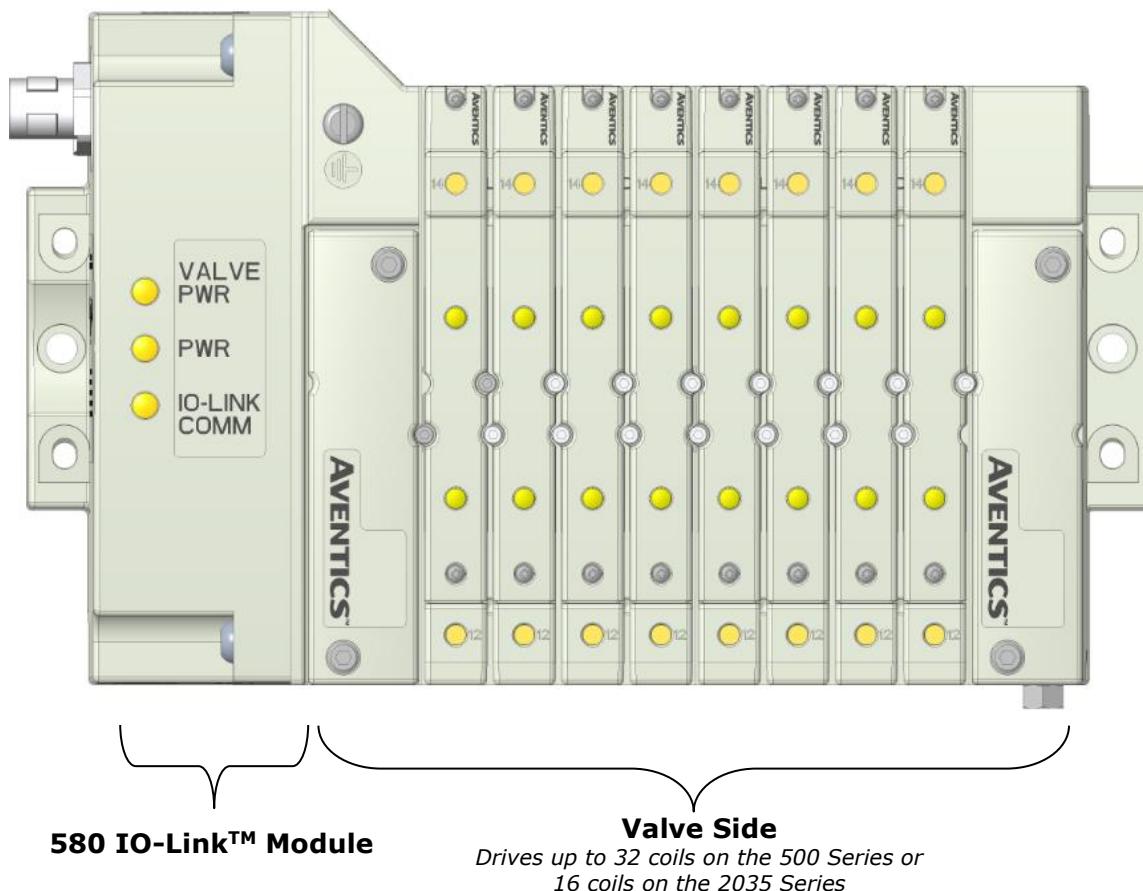
CAUTION

Electrical installation and operational guidelines

- *To be connected to Class 2 power source only*
- *All Aventics. communication nodes should be grounded during the installation process. These grounding guidelines can be found in National Electrical code IEC 60204-1 or EN 60204-1.*
- *All Aventics 580 Electronics Products to be installed or wired in accordance with Aventics's published instructions and applicable electrical codes.*
- **MULTIPLE CLASS 2 POWER SOURCES:** *When interconnects, class 2 sources shall be Listed and rated suitable for parallel interconnection*
- *Sources shall be Listed and rated suitable for parallel interconnection*
- **CLASS 2 WIRING:** *All field wiring shall be suitable for Class 1, Electric Light and Power, or Class 2, 3 wirings are routed separately and secured to maintain separation between 1) Class 2 wiring and all other class wiring, and 2) Limited energy circuit conductors from unlimited energy circuit conductors*
- *Class 2 Device Wiring Only – Do Not Reclassify and Install as Class 1, 3 or Power and Lighting Wiring*
- *When using molded connector power cables, Do Not rely on wire colors for Pin-Out.*
Always use pin number references.
- *Wire connections shall be rated suitable for the wire size (lead and building wiring) employed*
- **MULTIPLE CLASS 2 POWER SOURCES:** *When interconnects, class 2 sources shall be Listed and rated suitable for parallel interconnection*
- *Sources shall be Listed and rated suitable for parallel interconnection*

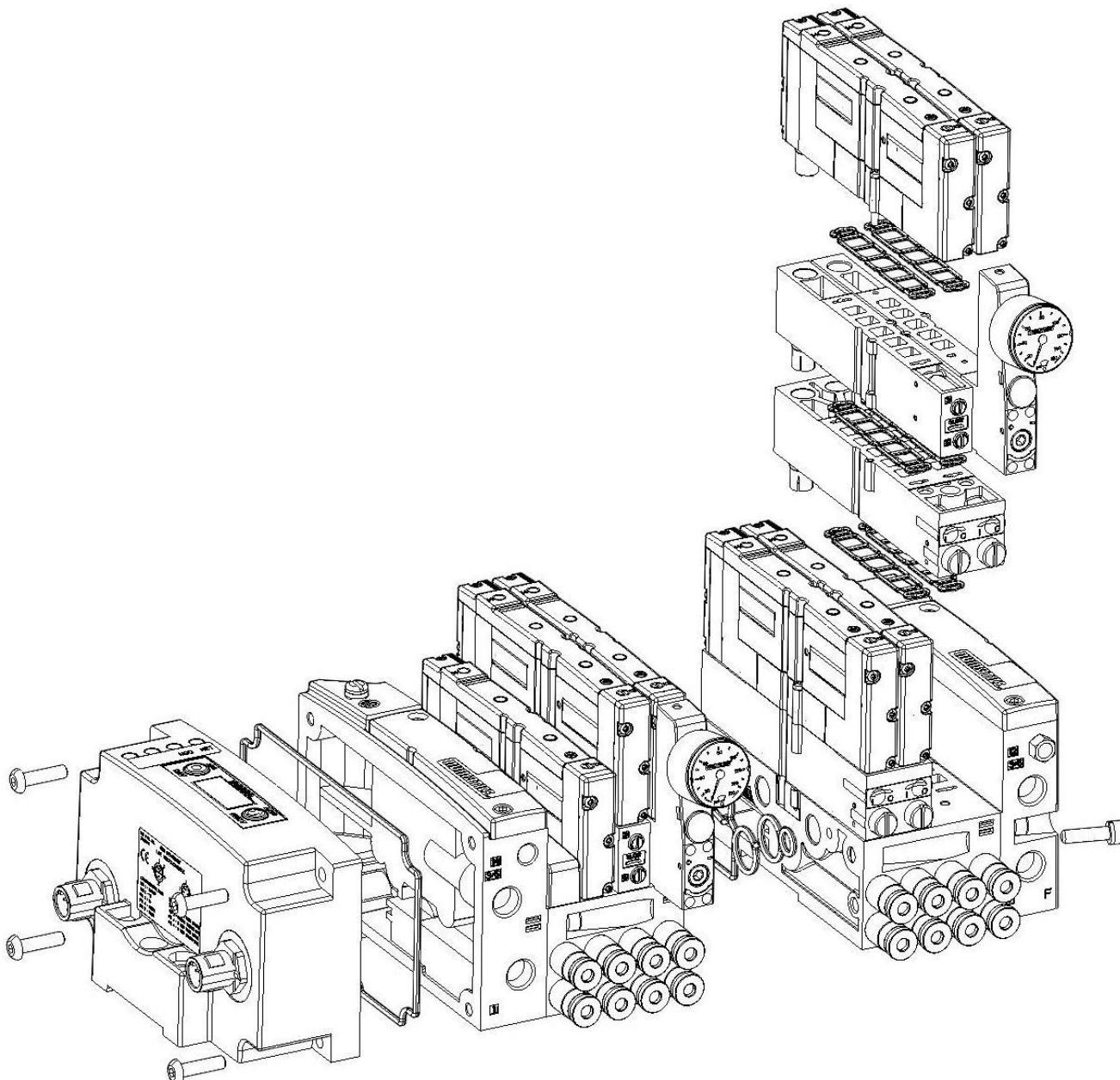
Table of Contents

	<u>PAGE</u>
1. About IO-Link™	5
2. 580 Introduction	5
2.1 Pneumatic Valve Manifold – 501 Series shown	6
2.2 Manifold Connectors	7
2.3 Z-Board™ Connectors	8
2.4 2035 Series Pneumatic Valve Manifold	9
2.5 2035 Series Z-Board™ Connectors	10
3. IO-Link™ Communication Module	11
3.1 Connector Pin-Outs	12
3.2 Chassis Ground	13
3.3 Power Consumption	14
3.4 Recommended External Fuses	15
3.5 Diagnostics – LED Functions	16
3.6 Diagnostic I/O Data	17
3.7 Diagnostic Events	18
3.8 ISDU Object Data	19
3.8.1 General (IO-Link Predefined) Device Parameters	19
3.8.2 Product-specific ISDU	20
3.8.3 Event Data	23
4. I/O Mapping Examples	24
4.1 Coil Output Mapping – 500 Series	24
4.2 Coil Status Mapping – 500 Series	24
4.3 Coil Output Mapping – 2035 Series	25
4.4 Coil Status Mapping – 2035 Series	25
5. Configuration Example - Balluff Master	26
5.1 Connect the Aventics 580 IO-Link™ manifold	26
5.2 Controller Tags (RSLogix 5000)	27
5.3 Configure Port for IO-Link™	28
5.4 Enable valve power	29
5.5 Control valve coil outputs	30
6. Configuration Example - IFM Master	31
6.1 Connect the Aventics 580 IO-Link™ manifold	31
6.2 Controller tags (RSLogix 5000)	32
6.3 Configure port for IO-Link™	33
6.4 Control valve coil outputs	34
7. Configuration Example - Siemens Master	35
7.1 Connect the Aventics 580 IO-Link™ manifold	35
7.2 Create the PLC hardware configuration for the Siemens ET200 IO Link master	36
7.3 Install the Aventics 580 IO-Link™ IODD file	39
8. Configuration Example - Rockwell Master	44
8.1 Connect the Aventics 580 IO-Link™ manifold	44
8.2 Create the PLC hardware configuration for the Rockwell 1732E-8IOLM12R IO Link™ master	45
9. Appendix	48
9.1 System Specifications	48
9.2 Troubleshooting Communication Node	48
9.3 Technical Support	48


1. About IO-Link™

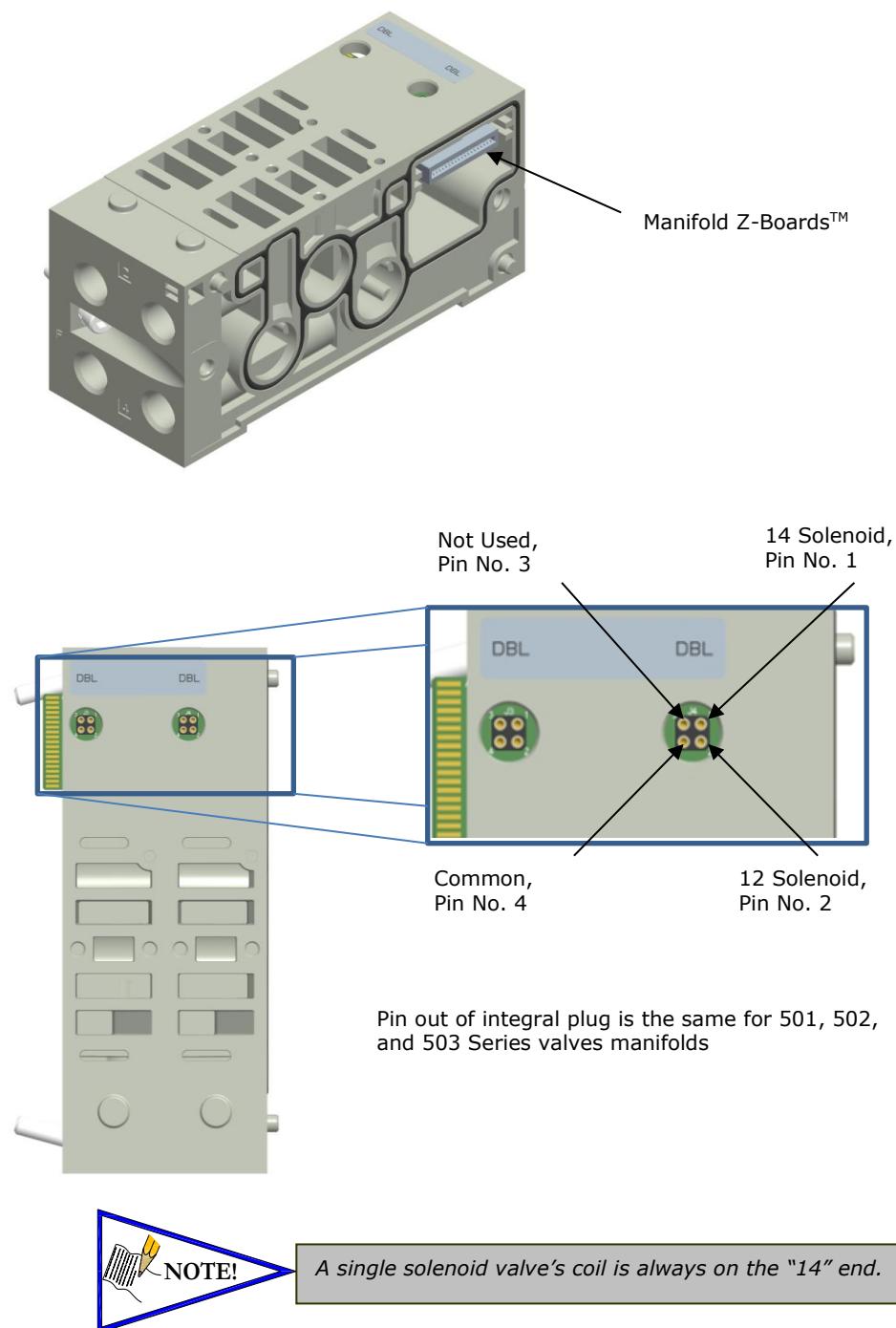
IO-Link™ is the first standardized IO technology worldwide (IEC 61131-9) for the communication with sensors and also actuators. The powerful point-to-point communication is based on the long established 3-wire sensor and actuator connection without additional requirements regarding the cable material. IO-Link™ is not fieldbus but the further development of the existing, tried-and-tested connection technology for sensors and actuators.

2. 580 Introduction

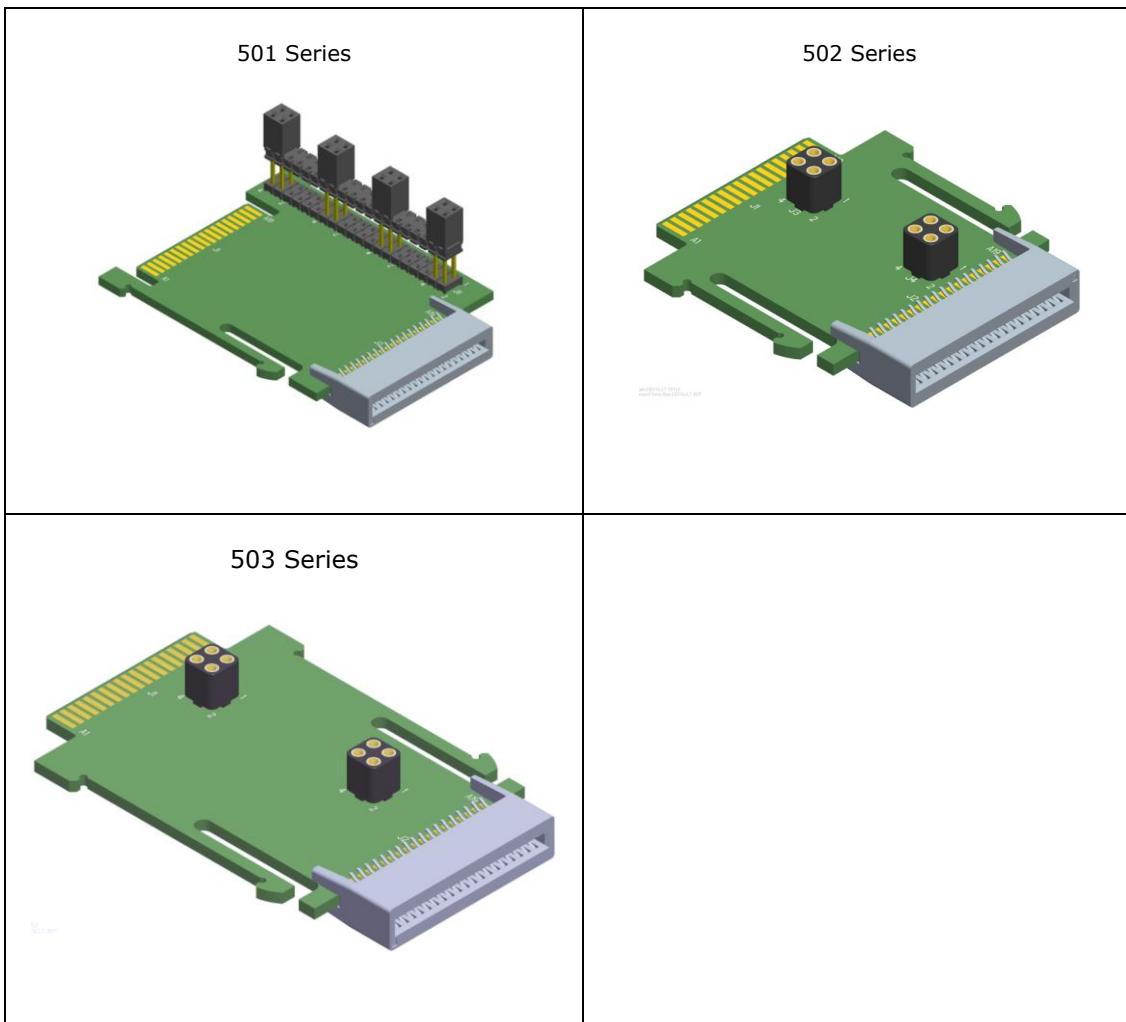

The 580 IO-LINK™ Node is an electronic valve control interface that enables any I/O link master to control 32 valve coils. The 580 IO-Link™ module supports Aventics 500 Series valves including, the 501, 502, and 503 and the 2035 Series. The 580 IO-Link™ Node can address a total of (32) coil outputs, with diagnostic functionality built in for the 500 Series valves and can address a total of (16) coil outputs, with diagnostic functionality built in the 2035 Series. With proper assembly and termination, the 580 IO-Link™ Node has an IP65 rating.

This manual details specific information for configuring and commissioning the Aventics 580 IO-Link™ Node. For more information, relating to Aventics 500 Series valve manifold assemblies, please refer to the Aventics 501 & 503 Series Catalogs or the 2035 Series Catalog, both can be found at www.asco.com.

2.1 Pneumatic Valve Manifold – 501 Series shown

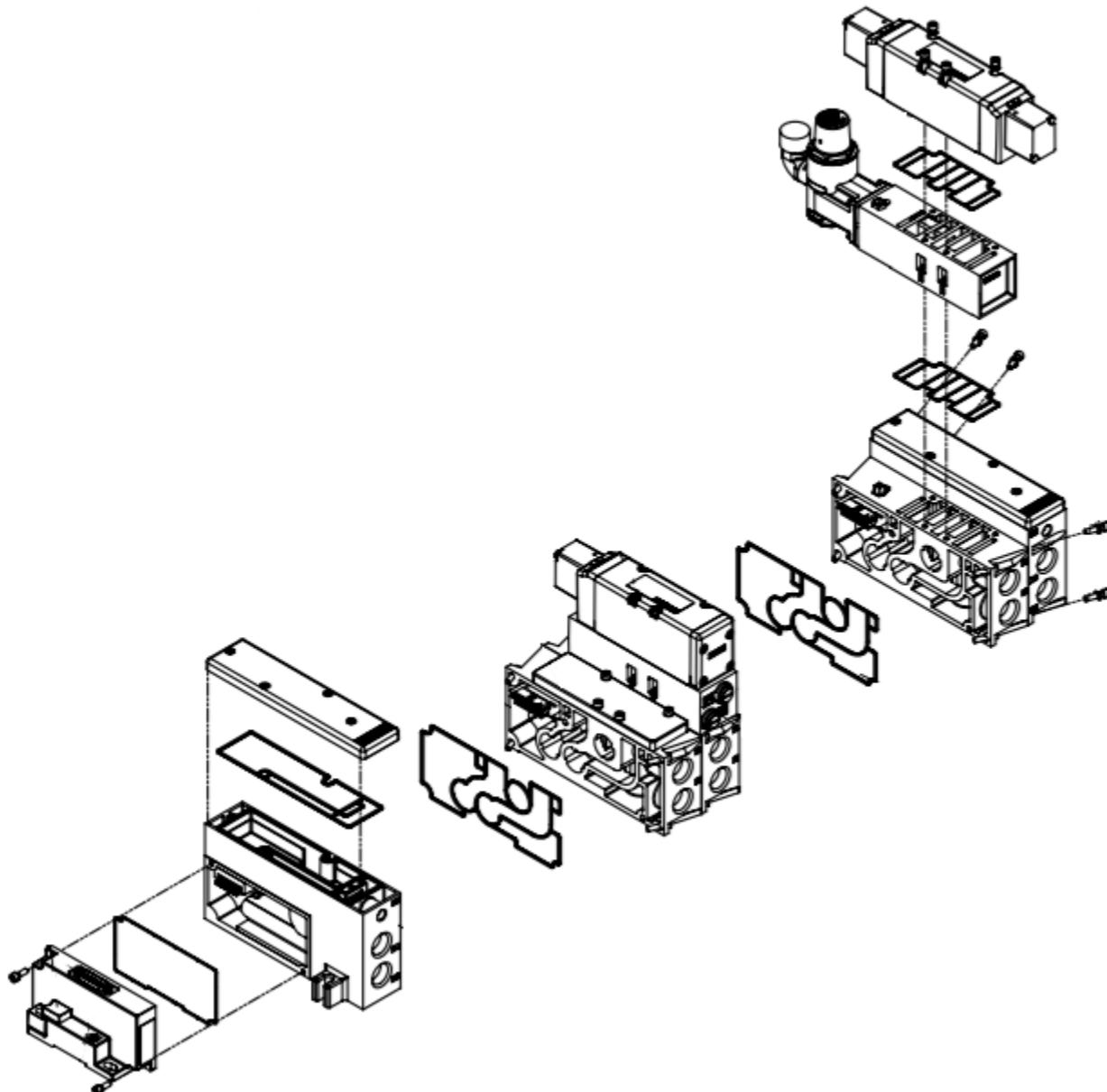

The pneumatic valve manifold with internal circuit board technology is modular. The valve solenoid coil connections are automatically made using Z-Board™ technology (plug together PC boards, which allow internal connections from solenoid coils to output drivers without the use of wires). This allows easy assembly and field changes.

2.2 Manifold Connectors

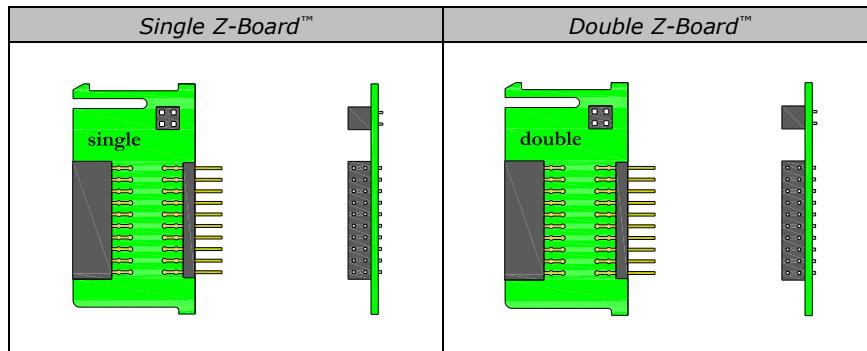

Solenoid Coil Connections using Z-Board™ Technology for 501/502/503 valve series

Z-Board™ plug together technology connects all valve solenoids to the valve coil output drivers, located in the 580 Node. There is a maximum of 32 coil outputs available on the complete manifold assemblies. The 32 available outputs are accessed on the 501 series valves utilizing 4 station manifolds and on the 502 and 503 series utilizing 2 station manifolds.

2.3 Z-Board™ Connectors


The 501/502/503 valve series utilize 2 different Z-Board™ designs to achieve the single and double solenoid output functions. This yields the possible 32 single, 16 double, or various combinations of valve coil output capabilities. The 501 Z-Board™ is minimum (3) station, the 502 and 503 Z-Board™ is minimum (2) stations.

Each series Z-Board™ can be selected in either SINGLE or DOUBLE output (coil) versions. The SINGLE and DOUBLE output function cannot be mixed on the Z-Boards™.


2.4 2035 Series Pneumatic Valve Manifold

The pneumatic valve manifold with internal circuit board technology is also modular. The valve solenoid coil connections are automatically made using Z-Board™ technology (plug together PC boards), which allow internal connection from solenoid coils to output drivers without the use of wires). This allows easy assembly and field changes.

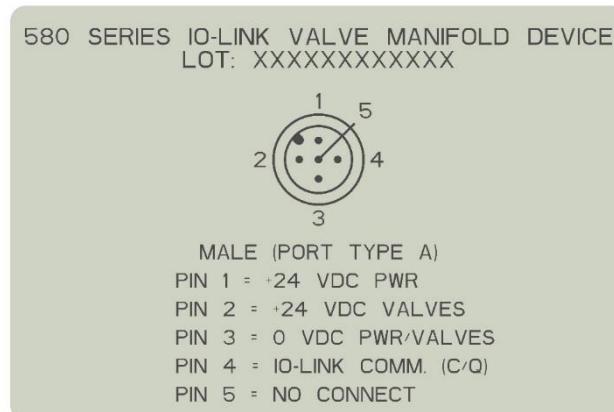
2.5 2035 Series Z-Board™ Connectors


The 2035 valve series utilize 2 different Z-Board™ designs to achieve the single and double solenoid output functions. This yields the possible 16 single, 8 double, or various combinations of valve coil output capabilities.

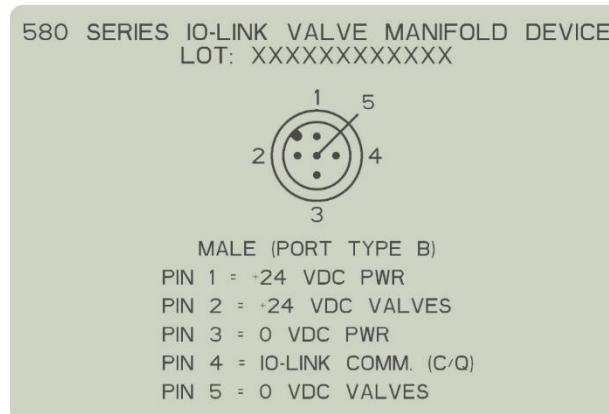
3. IO-Link™ Communication Module

This module provides Communication to the manifold. It contains communication electronics and internal short circuit protection.

Communication Node	Part Number
580 IO-Link™ Node (Port Type A) – 500 Series Valves	P580AELM1010A00
580 IO-Link™ Node w/DIN Rail (Port Type A) – 500 Series Valves	P580AELM1010DRM
580 IO-Link™ Node (Port Type B) – 500 Series Valves	P580AELM2010A00
580 IO-Link™ Node w/DIN Rail (Port Type B) – 500 Series Valves	P580AELM2010DRM
580 IO-Link™ Node (Port Type A) – 2035 Series Valves	P580AELM3010A00
580 IO-Link™ Node (Port Type B) – 2035 Series Valves	P580AELM4010A00

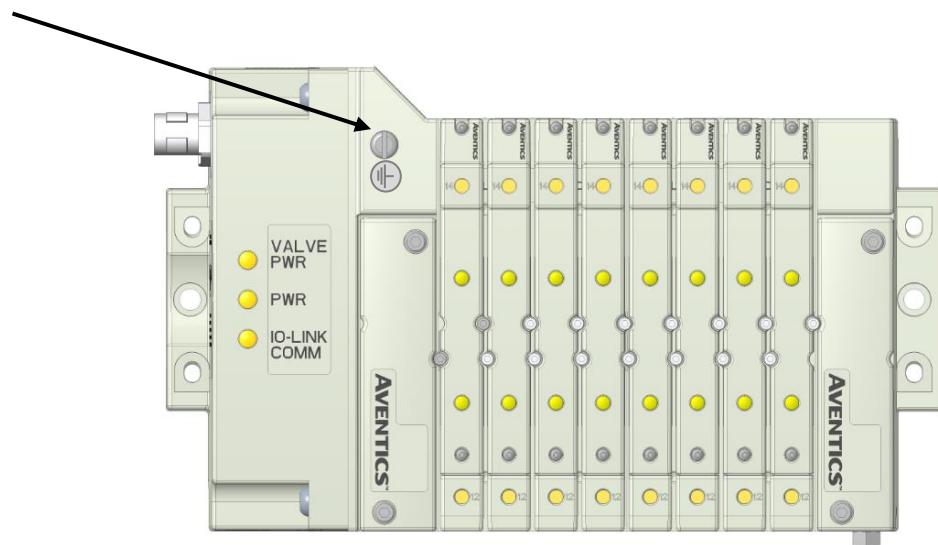


TD580IOLTM1-9EN 5/23
Subject to change without notice


3.1 Connector Pin-Outs

IO-Link™ devices are available with either Port Type A or Port Type B. The IO-Link™ slave device needs to match the port type of the IO-Link™ master device.

The IO-Link™ (Port Type A) connector is a single keyway 4 pin M12 male connector.


The IO-Link™ (Port Type B) connector is a single keyway 5 pin M12 male connector.

3.2 Chassis Ground

All Aventics manifolds should be grounded for safety. Grounding guidelines can be found in National Electrical code IEC 60204-1 or EN 60204-1.

CHASSIS GROUND CONNECTION POINT

CAUTION

- When grounding to a machine frame, please ensure that the machine frame itself is already properly grounded.
- Better grounding can be achieved when larger diameter (lower gauge) wire is used.

3.3 Power Consumption

Power and communication Connection – Port Type A

Pin No.	Function	Description
1	+24 VDC (Node)	Voltage used to power node electronics
2	+24 VDC (Valve)	Voltage used to power valves
3	0 VDC Common (Node and Valve)	0 VDC (-V) Voltage used to power node and valves
4	I/O Link Communication	I/O Link Communication

Power and communication Connection – Port Type B

Pin No.	Function	Description
1	+24 VDC (Node)	Voltage used to power node electronics
2	+24 VDC (Valve)	Voltage used to power valves
3	0 VDC (Node)	0 VDC (-V) Voltage used to power node
4	I/O Link Communication	I/O Link Communication
5	0 VDC (Valve)	0 VDC (-V) Voltage used to power valves

Power Rating

- The maximum system current capability is 4 Amps. Care should be taken not to exceed 4 Amp draw through the M12 Power connector pins.

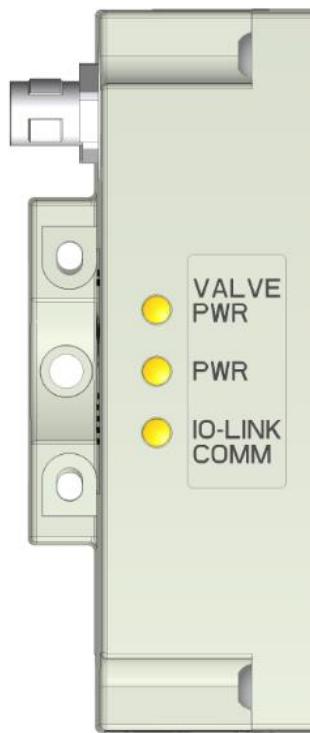
Component	Voltage	Tolerance	+24VDC (Valve)		+24VDC (Node)	
			Current	Power	Current	Power
Solenoid Valve Coil 501 (Each)	24 VDC	+10%/-15%	0.03 Amps	0.8 Watts	NA	NA
Solenoid Valve Coil 502 (Each)	24 VDC	+10%/-15%	0.04 Amps	1.0 Watts	NA	NA
Solenoid Valve Coil 503 (Each)	24 VDC	+10%/-15%	0.07 Amps	1.7 Watts	NA	NA
Solenoid Valve Coil 2035 (Each)	24 VDC	+10%/-15%	0.10 Amps	2.5 Watts	NA	NA
580 IO-Link™ Module	24 VDC	+/- 10%	0.017 Amps	0.4 Watts	0.02 Amps	0.5 Watts

3.4 Recommended External Fuses

External fuses should be chosen based upon the physical manifold configuration. Please refer to table below for the external fuse sizing chart.

External Fuse Sizing Chart

Power Consumption - Power Connector Pin for VALVES		
<u>Description</u>	<u>Current</u>	
Number of Solenoid Valve Coils Energized Simultaneously		
<input type="text"/> X 0.03 A (501 Series)	=	Amps
<input type="text"/> X 0.04 A (502 Series)	=	Amps
<input type="text"/> X 0.07 A (503 Series)	=	Amps
<input type="text"/> X 0.10 A (2035 Series)	=	Amps
580 IO-Link™ module power consumption	+	0.017 Amps
Total:	=	Amps
Surge Compensation:	X	1.25
Suggested External +24 VDC (Valves) Fuse Value:	=	Amps



Power Consumption - Power Connector Pin for NODE		
<u>Description</u>	<u>Current</u>	
580 IO-Link™ module power consumption	=	0.020 Amps
Surge Compensation:	X	1.25
Suggested External Pin +24 VDC (Node) Fuse Value:	=	0.060 Amps

- The Module Power pins supply power to the node electronics. These pins must be powered at all times for the communication node to be functional. See page 12 for reference.
- Reverse polarity protection is provided.

3.5 Diagnostics – LED Functions

<i>LED Name</i>	<i>Color</i>	<i>Status</i>	<i>Description</i>
Valve PWR	Off	OFF	Valve Power Off
	Green	ON	Valve Power On
PWR	Off	OFF	Module Power OFF
	Green	ON	Module Power On
IO-Link™ Comm.	Off	OFF	No I-O Link Communication Established
	Green	FLASHING	I-O Link Communication Established

3.6 Diagnostic I/O Data

In the example below; the I/O link master writes the Aventics 580 manifold diagnostic data into the PLC data table as shown below.

Byte 0: Reserved
 Byte 1: Module Summary Status
 Bit 0: Valve power is below 21
 Bit 1: Shorted / Over-Current Coil condition present
 Bit 2: Open Coil condition present
 Byte 2: Open Coils 0-7
 Byte 3: Open Coils 8-15
 Byte 4: Open Coils 16-23
 Byte 5: Open Coils 24-31
 Byte 6: Shorted/Over-current Coils 0-7
 Byte 7: Shorted/Over-current Coils 8-15
 Byte 8: Shorted/Over-current Coils 16-23
 Byte 9: Shorted/Over-current Coils 24-31

Input Table									
BYTE	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	Allocated and Reserved								
1	Allocated and Reserved	Open Coil Status	Shorted Coil Status	Valve Power Status					
2	Open Coil Status, Coil No. 7	Open Coil Status, Coil No. 6	Open Coil Status, Coil No. 5	Open Coil Status, Coil No. 4	Open Coil Status, Coil No. 3	Open Coil Status, Coil No. 2	Open Coil Status, Coil No. 1	Open Coil Status, Coil No. 0	
3	Open Coil Status, Coil No. 15	Open Coil Status, Coil No. 14	Open Coil Status, Coil No. 13	Open Coil Status, Coil No. 12	Open Coil Status, Coil No. 11	Open Coil Status, Coil No. 10	Open Coil Status, Coil No. 9	Open Coil Status, Coil No. 8	
4	Open Coil Status, Coil No. 23	Open Coil Status, Coil No. 22	Open Coil Status, Coil No. 21	Open Coil Status, Coil No. 20	Open Coil Status, Coil No. 19	Open Coil Status, Coil No. 18	Open Coil Status, Coil No. 17	Open Coil Status, Coil No. 16	
5	Open Coil Status, Coil No. 31	Open Coil Status, Coil No. 30	Open Coil Status, Coil No. 29	Open Coil Status, Coil No. 28	Open Coil Status, Coil No. 27	Open Coil Status, Coil No. 26	Open Coil Status, Coil No. 25	Open Coil Status, Coil No. 24	
6	Shorted Coil Status Coil No. 7	Shorted Coil Status, Coil No. 6	Shorted Coil Status, Coil No. 5	Shorted Coil Status, Coil No. 4	Shorted Coil Status, Coil No. 3	Shorted Coil Status, Coil No. 2	Shorted Coil Status, Coil No. 1	Shorted Coil Status, Coil No. 0	
7	Shorted Coil Status, Coil No. 15	Shorted Coil Status, Coil No. 14	Shorted Coil Status, Coil No. 13	Shorted Coil Status, Coil No. 12	Shorted Coil Status, Coil No. 11	Shorted Coil Status, Coil No. 10	Shorted Coil Status, Coil No. 9	Shorted Coil Status, Coil No. 8	
8	Shorted Coil Status, Coil No. 23	Shorted Coil Status, Coil No. 22	Shorted Coil Status, Coil No. 21	Shorted Coil Status, Coil No. 20	Shorted Coil Status, Coil No. 19	Shorted Coil Status, Coil No. 18	Shorted Coil Status, Coil No. 17	Shorted Coil Status, Coil No. 16	
9	Shorted Coil Status, Coil No. 31	Shorted Coil Status, Coil No. 30	Shorted Coil Status, Coil No. 29	Shorted Coil Status, Coil No. 28	Shorted Coil Status, Coil No. 27	Shorted Coil Status, Coil No. 26	Shorted Coil Status, Coil No. 25	Shorted Coil Status, Coil No. 24	

*The example Input table above is for 500 Series valves; the 2035 Series will map differently (see section 4.4).

Diagnostic Status Bit Action

Output Type	Output State	Fault Condition		Status Bit
Valve Solenoid Coil Driver	ON	No Fault		0
		Fault - Short Circuit, Over Temp/Over Current		1
Valve Solenoid Coil Driver	OFF	No Fault		0
		Fault - Open Load		1

- Coils cannot be detected as "shorted" unless commanded as energized.
- Coils cannot be detected as "open" if commanded as energized
- The IO-Link node will send an Events 0x7700 if at least one coil detected as open and 0x7710 if at least one coil detected as shorted

3.7 Diagnostic Events

Event driven diagnostic codes are also reported by the Aventics 580 IO-Link™ module to the IO Link master. The Event driven diagnostics are mapped to the Baluff input table as shown below. The events are queued in three byte blocks from the newest to oldest

+ Balluff:I.Data[47]	16#b0	Hex	SINT	First Event Status
+ Balluff:I.Data[48]	16#77	Hex	SINT	First Event Code Hi Byte
+ Balluff:I.Data[49]	16#10	Hex	SINT	First Event Code Low Byte
+ Balluff:I.Data[50]	16#f0	Hex	SINT	Second Event Status
+ Balluff:I.Data[51]	16#77	Hex	SINT	Second Event Code Hi Byte
+ Balluff:I.Data[52]	16#00	Hex	SINT	Second Event Code Low Byte
+ Balluff:I.Data[53]	16#f0	Hex	SINT	Third Event Status
+ Balluff:I.Data[54]	16#77	Hex	SINT	Third Event Code Hi Byte
+ Balluff:I.Data[55]	16#10	Hex	SINT	Third Event Code Low Byte

The following (HEX) diagnostic "Event Status" and "Event Codes" are reported by the Aventics 580 IO-Link™ module include;

Event Status

F4	Event Active
B4	Event Cleared

Event Code

51 12	Switched power low or off (below 20.8 Volt threshold)
77 00	Wire break detected (open coil detected)
77 10	Short circuit detected (shorted coil)

3.8 ISDU Object Data

The following service data objects are available from the 580 IO-Link™ Valve Manifold Driver:

3.8.1 General (IO-Link Predefined) Device Parameters

Vendor Name (READ ONLY) Index 0x0010 (16d), Subindex 0x00	READ: Returns string "ASCO Numatics Inc"
Vendor Text (READ ONLY) Index 0x0011 (17d), Subindex 0x00	READ: Returns string "www.asco.com"
Product Name (READ ONLY) Index 0x0012 (18d), Subindex 0x00	READ: Returns string "IO-Link Valve Manifold Driver"
Product ID (READ ONLY) Index 0x0013 (19d), Subindex 0x00	READ: Returns string "518571" for 4-pin version 518571 Returns string "520225" for 5-Pin version 520225
Product Text (READ ONLY) Index 0x0014 (20d), Subindex 0x00	READ: Returns string "32 Channels / Sinking Outputs"
Serial Number (READ ONLY) Index 0x0015 (21d), Subindex 0x00	READ: Returns string which contains the Serial Number of the device
Hardware Revision ID (READ ONLY) Index 0x0016 (22d), Subindex 0x00	READ: Returns string which contains Hardware Revision description
Firmware Revision ID (READ ONLY) Index 0x0017 (23d), Subindex 0x00	READ: Returns string which contains Firmware Revision description along with build time
Application Specific Tag (READ/WRITE) Index 0x0018 (24d), Subindex 0x00	READ: Returns user-defined string up to 32 characters WRITE: Rewrites application specific tag with user-defined data. Argument data must be 32 bytes or less in length.
Error Count (READ ONLY) Index 0x0020 (32d), Subindex 0x00	READ: Returns 16-bit error counter in Big Endian format.

3.8.2 Product-specific ISDU

Fault State Configuration (Read/Write) Index 0x0060 (96d)	READ	SubIndex 0xFF (255d) Returns 8 bytes of Fault State configuration.
	READ	Subindex 0x00 - 0x1F (0d..32d) Returns 1 byte of Fault State configuration for a particular channel; the subindex is the number of the channel. The state of output stage on Fault Condition is encoded in the two least significant bits.
	WRITE	Subindex 0xFF (255d) Update Fault State Configuration for all the channels (Argument data MUST be 8 bytes in length.)
	WRITE	Subindex 0x00 - 0x1F (0d..32d) Update Fault State Configuration for particular channel; the subindex is the number of the channel. (Argument data MUST be 1 byte in length.)
	The fault condition state of each output stage is encoded by two bits. ..00.. - De-energize corresponding output (OFF). ..01.. - Energize the corresponding output (ON). ..10.. - Keep the last state ..11.. - Reserved	

Below is the data mapping for the fault state configuration data:

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Byte 0:	OUT_03_b1	OUT_03_b0	OUT_02_b1	OUT_02_b0	OUT_01_b1	OUT_01_b0	OUT_00_b1	OUT_00_b0
Byte 1:	OUT_03_b1	OUT_03_b0	OUT_06_b1	OUT_06_b0	OUT_05_b1	OUT_05_b0	OUT_04_b1	OUT_04_b0
Byte 2:	OUT_11_b1	OUT_11_b0	OUT_10_b1	OUT_10_b0	OUT_09_b1	OUT_09_b0	OUT_08_b1	OUT_08_b0
Byte 3:	OUT_15_b1	OUT_15_b0	OUT_14_b1	OUT_14_b0	OUT_13_b1	OUT_13_b0	OUT_12_b1	OUT_12_b0
Byte 4:	OUT_19_b1	OUT_19_b0	OUT_18_b1	OUT_18_b0	OUT_17_b1	OUT_17_b0	OUT_16_b1	OUT_16_b0
Byte 5:	OUT_23_b1	OUT_23_b0	OUT_22_b1	OUT_22_b0	OUT_21_b1	OUT_21_b0	OUT_20_b1	OUT_20_b0
Byte 6:	OUT_27_b1	OUT_27_b0	OUT_26_b1	OUT_26_b0	OUT_25_b1	OUT_25_b0	OUT_24_b1	OUT_24_b0
Byte 7:	OUT_31_b1	OUT_31_b0	OUT_30_b1	OUT_30_b0	OUT_29_b1	OUT_29_b0	OUT_28_b1	OUT_28_b0

Auxiliary Configuration Index 0x0061 (97dec)	READ: Returns 2 bytes of Auxiliary Configuration data							
	WRITE: Update Auxiliary Configuration data							
	The following parameters are available:							
	SL: Shorted Loads (1-bit) 1 - Include Shorted Loads Status data (4-bytes) in PD_IN 0 - Do not include Shorted Loads status data							
	OL: Open Loads (1-bit) 1 - Include Open Loads Status data (4-bytes) in PD_IN 0 - Do not include Open Loads status data							
	XS: Extended Status (1-bit) 1 - Include Extended Status data (2-bytes) in PD_IN 0 - Do not include Extended Status data							
	Note: if values SL, OL and XS are all set to zero, PD_IN will not be sent.							
	ST0 - ST2: Manifold self-test (3-bit) ..000.. - Do not self-test (normal operation) ..001.. - Energize and de-energize all outputs individually in sequence ..010.. - Energize all outputs in Gray code sequence ..011.. - Energize all outputs in sequence in groups of two ..100.. - Toggle all outputs on/off at once ..101.. - Reserved ..110.. - Reserved ..111.. - Reserved							

Below is the data mapping for the Auxiliary configuration data:

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Byte 0:	(Reserved)	ST2	ST1	ST0	(Reserved)	XS	OL	SL
Byte 1:	(Reserved)							

Format of data PD_IN:

Bytes 0 - 1: Extended status data

- Bit 0: Valve power voltage below threshold
- Bit 1: At least one shorted output detected
- Bit 2: At least one open output detected
- Bits 3 - 15: Reserved

Bytes 2 - 5: Open loads status data (see "Channels with Open Loads")

Bytes 6 - 9: Shorted loads status data (see "Channels with Shorted Loads")

Channel Cycle Counters Index 0x0062 (98d), Subindex 0x00 - 0x1F (0d - 31d)	READ	Returns 32-bit big-endian cycle counter for the particular channel. The subindex is the number of the channel. Transition from channel OFF to channel ON is considered one cycle.
	WRITE	Writing the four octets [0x52,0x45,0x53,0x21] (Literally: "RES!") will reset the corresponding Channel Cycle Counter. The subindex is the number of the channel.
Cycle Counters update increment Index 0x0063 (99d), Subindex 0x00 (0d)	READ	Returns 16-bit number (big endian) of cycles counted between successive logging of Cycle Counters to the non-volatile memory. Serves as a maximum number of cycles which could be not accounted for in case of power loss or hardware fault.
	WRITE	Re-assigns the Cycle Counters update increment value. Default value is 256. Note: A greater value leads to less frequent logging of statistics and a longer expected life of the embedded EEPROM.
Uptime Counter Index 0x0064 (100d), Subindex 0x00	READ	Returns 32-bit (big endian) number of uptime seconds for the Device.
	WRITE	Writing the value [0x52,0x45,0x53,0x21] (literally - "RES!") will reset the uptime counter.
Uptime Counter update increment Index 0x0065 (101d), Subindex 0x00	READ	Returns a 16-bit (big endian) maximum number of seconds between updates of Uptime Counter to the non-volatile memory and represents the maximum number of seconds which could be lost between data logging events. Note: The Uptime Counter is also updated with each channel Cycle Counter update.
	WRITE	Re-assigns the Uptime Counter update increment. Minimum practical value considered 3600 seconds or one hour (default).
Connected Channels Index 0x0068 (104d) Subindex 0x00	READ	Returns a 4-byte bitmap of Channels which were <i>not</i> detected as open on the Device <i>startup</i> . Each "0" represents a channel which has been detected as having no load. Open Channels are excluded from diagnostics data and are not controlled during runtime.
	WRITE	Allows for override of the Connected Channels configuration.

Below is the data mapping for the connected channels data:

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Byte 0:	OUT_07_OK	OUT_06_OK	OUT_05_OK	OUT_04_OK	OUT_03_OK	OUT_02_OK	OUT_01_OK	OUT_00_OK
Byte 1:	OUT_15_OK	OUT_14_OK	OUT_13_OK	OUT_12_OK	OUT_11_OK	OUT_10_OK	OUT_09_OK	OUT_08_OK
Byte 2:	OUT_23_OK	OUT_22_OK	OUT_21_OK	OUT_20_OK	OUT_19_OK	OUT_18_OK	OUT_17_OK	OUT_16_OK
Byte 3:	OUT_31_OK	OUT_30_OK	OUT_29_OK	OUT_28_OK	OUT_27_OK	OUT_26_OK	OUT_25_OK	OUT_24_OK

Channels with Open Loads	Read only: Returns a 4-byte bitmap of Channels which are detected as OPEN during runtime. Each "1" represents a channel which has been detected as one having a missing load while it was OFF.
---------------------------------	--

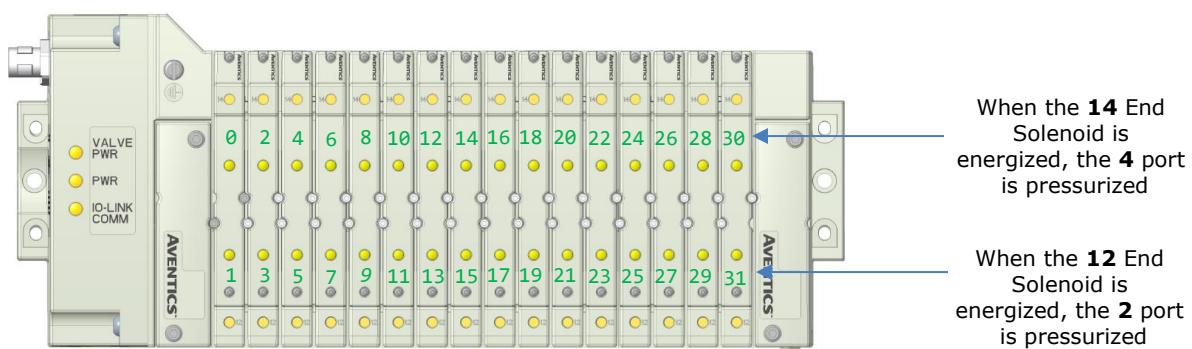
Below is the data mapping for the channels with open loads data:

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Byte 0:	CH_07_OPEN	CH_06_OPEN	CH_05_OPEN	CH_04_OPEN	CH_03_OPEN	CH_02_OPEN	CH_01_OPEN	CH_00_OPEN
Byte 1:	CH_15_OPEN	CH_14_OPEN	CH_13_OPEN	CH_12_OPEN	CH_11_OPEN	CH_10_OPEN	CH_09_OPEN	CH_08_OPEN
Byte 2:	CH_23_OPEN	CH_22_OPEN	CH_21_OPEN	CH_20_OPEN	CH_19_OPEN	CH_18_OPEN	CH_17_OPEN	CH_16_OPEN
Byte 3:	CH_31_OPEN	CH_30_OPEN	CH_29_OPEN	CH_28_OPEN	CH_27_OPEN	CH_26_OPEN	CH_25_OPEN	CH_24_OPEN

Channels with Shorted Loads	Read only: Returns a 4-byte bitmap of Channels which are detected as SHORTED (over-current) during runtime. Each "1" represents a channel which has been detected as one having an short circuit / over-current load while it was ON.
------------------------------------	---

Below is the data mapping for the channels with shorted loads data:

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Byte 0:	CH_07_SHRT	CH_06_SHRT	CH_05_SHRT	CH_04_SHRT	CH_03_SHRT	CH_02_SHRT	CH_01_SHRT	CH_00_SHRT
Byte 1:	CH_15_SHRT	CH_14_SHRT	CH_13_SHRT	CH_12_SHRT	CH_11_SHRT	CH_10_SHRT	CH_09_SHRT	CH_08_SHRT
Byte 2:	CH_23_SHRT	CH_22_SHRT	CH_21_SHRT	CH_20_SHRT	CH_19_SHRT	CH_18_SHRT	CH_17_SHRT	CH_16_SHRT
Byte 3:	CH_31_SHRT	CH_30_SHRT	CH_29_SHRT	CH_28_SHRT	CH_27_SHRT	CH_26_SHRT	CH_25_SHRT	CH_24_SHRT


3.8.3 Event Data

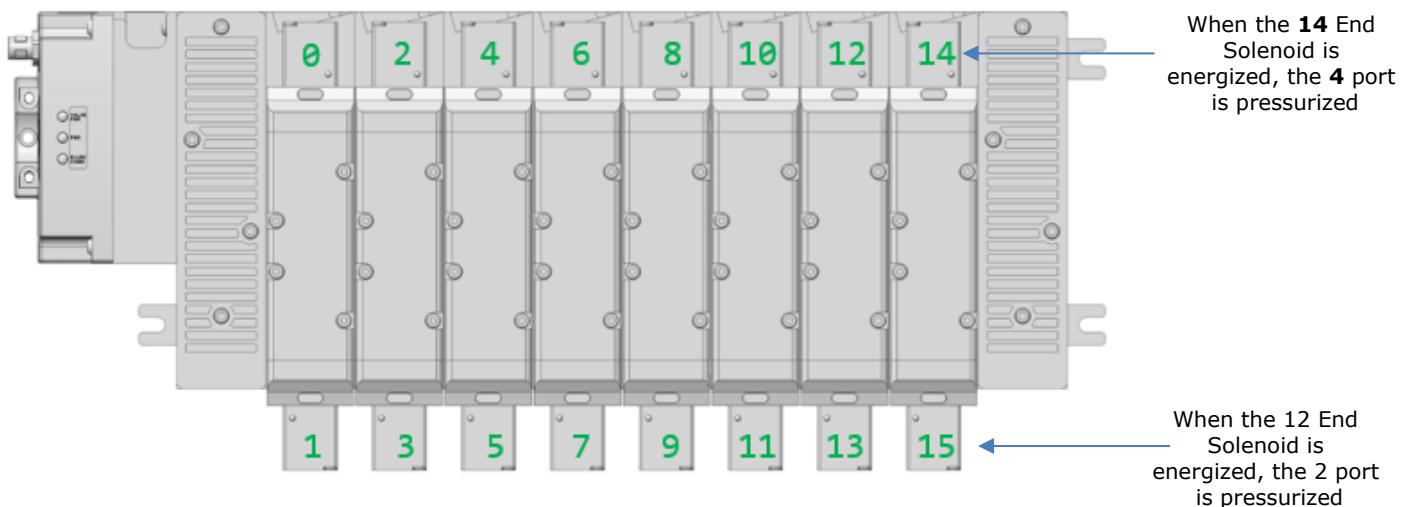
Secondary PSU voltage fault Event Code 0x5112	Sent with APPEARS attribute when Secondary (actuator) power supply voltage drops below approx. 20.8 volt. Sent with DISAPPEARS attribute when aforementioned condition ends.
Wire Break of a subordinate device Event Code 0x7700	Sent with APPEARS attribute when any channel is detected as Open Circuited during runtime. Sent with DISAPPEARS attribute when aforementioned condition ends.
Short Circuit Detected Event Code 0x7710	Sent with APPEARS attribute when any channel is detected as Short Circuited during runtime. Sent with DISAPPEARS attribute when aforementioned condition ends.

4. I/O Mapping Examples

The following examples describe IO mapping for 500 series and 2035 valve manifolds.

500 Series

4.1 Coil Output Mapping – 500 Series


Output Table								
BYTE	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Valve Coil No. 7	Valve Coil No. 6	Valve Coil No. 5	Valve Coil No. 4	Valve Coil No. 3	Valve Coil No. 2	Valve Coil No. 1	Valve Coil No. 0
1	Valve Coil No. 15	Valve Coil No. 14	Valve Coil No. 13	Valve Coil No. 12	Valve Coil No. 11	Valve Coil No. 10	Valve Coil No. 9	Valve Coil No. 8
2	Valve Coil No. 23	Valve Coil No. 22	Valve Coil No. 21	Valve Coil No. 20	Valve Coil No. 19	Valve Coil No. 18	Valve Coil No. 17	Valve Coil No. 16
3	Valve Coil No. 31	Valve Coil No. 30	Valve Coil No. 29	Valve Coil No. 28	Valve Coil No. 27	Valve Coil No. 26	Valve Coil No. 25	Valve Coil No. 24

4.2 Coil Status Mapping – 500 Series

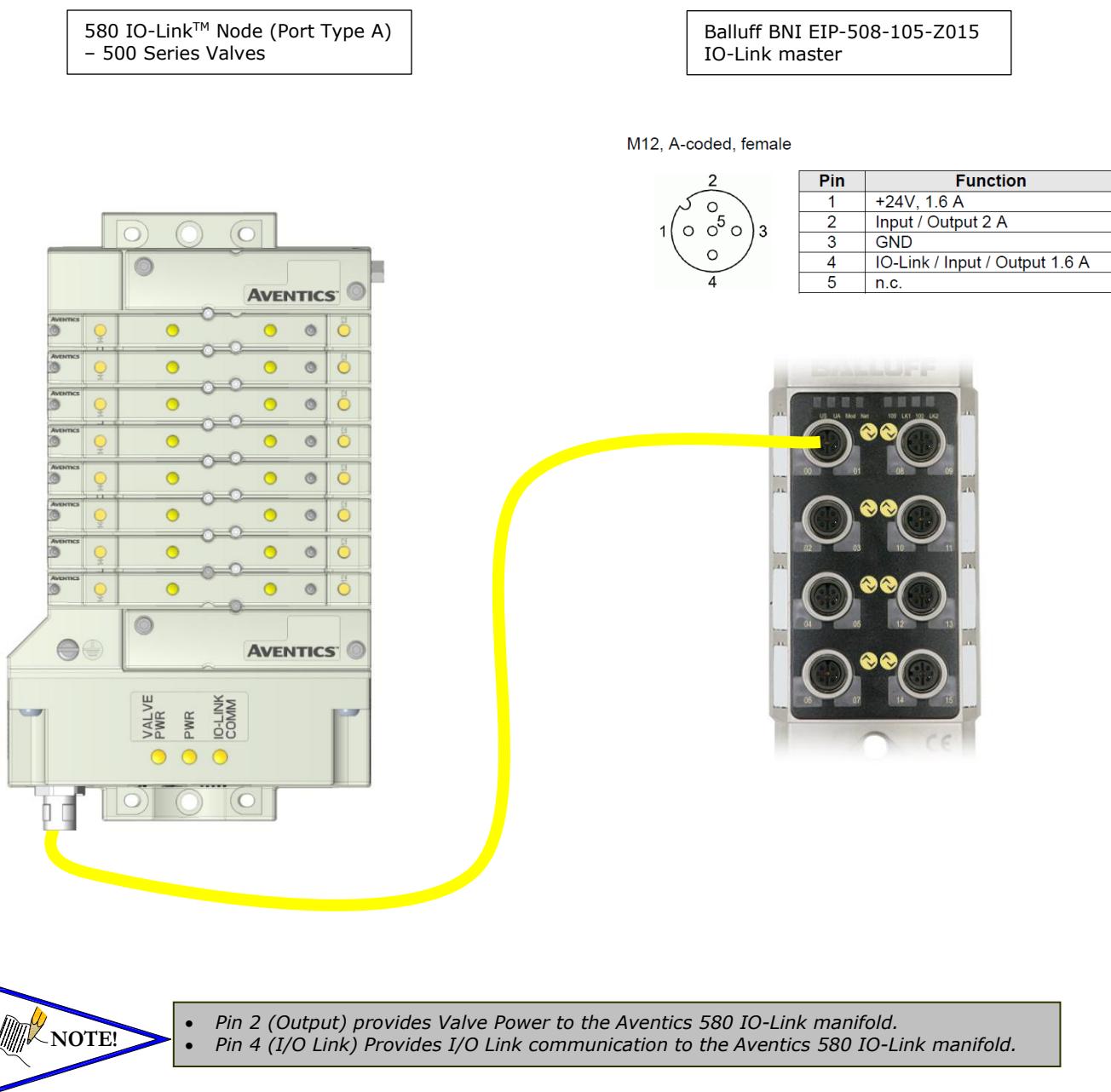
Input Table								
BYTE	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Allocated and Reserved							
1	Allocated and Reserved	Open Coil Status	Shorted Coil Status	Valve Power Status				
2	Open Coil Status, Coil No. 7	Open Coil Status, Coil No. 6	Open Coil Status, Coil No. 5	Open Coil Status, Coil No. 4	Open Coil Status, Coil No. 3	Open Coil Status, Coil No. 2	Open Coil Status, Coil No. 1	Open Coil Status, Coil No. 0
3	Open Coil Status, Coil No. 15	Open Coil Status, Coil No. 14	Open Coil Status, Coil No. 13	Open Coil Status, Coil No. 12	Open Coil Status, Coil No. 11	Open Coil Status, Coil No. 10	Open Coil Status, Coil No. 9	Open Coil Status, Coil No. 8
4	Open Coil Status, Coil No. 23	Open Coil Status, Coil No. 22	Open Coil Status, Coil No. 21	Open Coil Status, Coil No. 20	Open Coil Status, Coil No. 19	Open Coil Status, Coil No. 18	Open Coil Status, Coil No. 17	Open Coil Status, Coil No. 16
5	Open Coil Status, Coil No. 31	Open Coil Status, Coil No. 30	Open Coil Status, Coil No. 29	Open Coil Status, Coil No. 28	Open Coil Status, Coil No. 27	Open Coil Status, Coil No. 26	Open Coil Status, Coil No. 25	Open Coil Status, Coil No. 24
6	Shorted Coil Status, Coil No. 7	Shorted Coil Status, Coil No. 6	Shorted Coil Status, Coil No. 5	Shorted Coil Status, Coil No. 4	Shorted Coil Status, Coil No. 3	Shorted Coil Status, Coil No. 2	Shorted Coil Status, Coil No. 1	Shorted Coil Status, Coil No. 0
7	Shorted Coil Status, Coil No. 15	Shorted Coil Status, Coil No. 14	Shorted Coil Status, Coil No. 13	Shorted Coil Status, Coil No. 12	Shorted Coil Status, Coil No. 11	Shorted Coil Status, Coil No. 10	Shorted Coil Status, Coil No. 9	Shorted Coil Status, Coil No. 8
8	Shorted Coil Status, Coil No. 23	Shorted Coil Status, Coil No. 22	Shorted Coil Status, Coil No. 21	Shorted Coil Status, Coil No. 20	Shorted Coil Status, Coil No. 19	Shorted Coil Status, Coil No. 18	Shorted Coil Status, Coil No. 17	Shorted Coil Status, Coil No. 16
9	Shorted Coil Status, Coil No. 31	Shorted Coil Status, Coil No. 30	Shorted Coil Status, Coil No. 29	Shorted Coil Status, Coil No. 28	Shorted Coil Status, Coil No. 27	Shorted Coil Status, Coil No. 26	Shorted Coil Status, Coil No. 25	Shorted Coil Status, Coil No. 24

2035 Series

4.3 Coil Output Mapping – 2035 Series

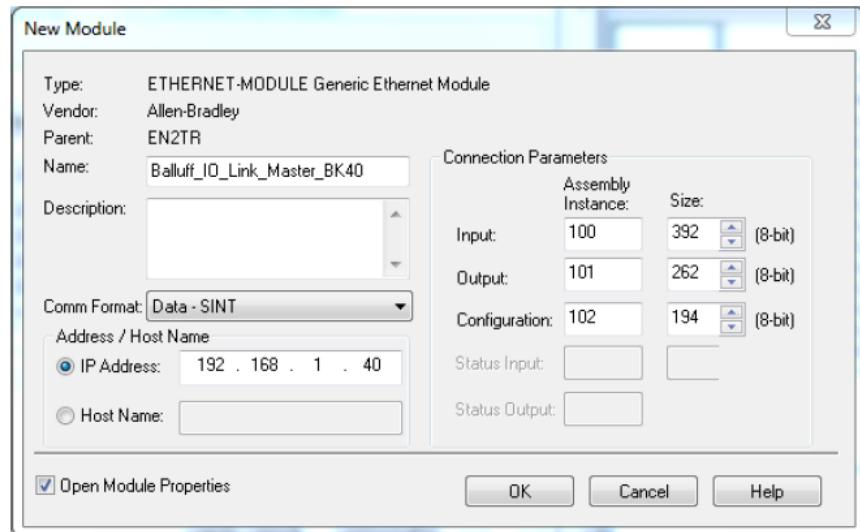
Output Table								
BYTE	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Valve Coil No. 7	Valve Coil No. 6	Valve Coil No. 5	Valve Coil No. 4	Valve Coil No. 3	Valve Coil No. 2	Valve Coil No. 1	Valve Coil No. 0
1	Valve Coil No. 15	Valve Coil No. 14	Valve Coil No. 13	Valve Coil No. 12	Valve Coil No. 11	Valve Coil No. 10	Valve Coil No. 9	Valve Coil No. 8

4.4 Coil Status Mapping – 2035 Series

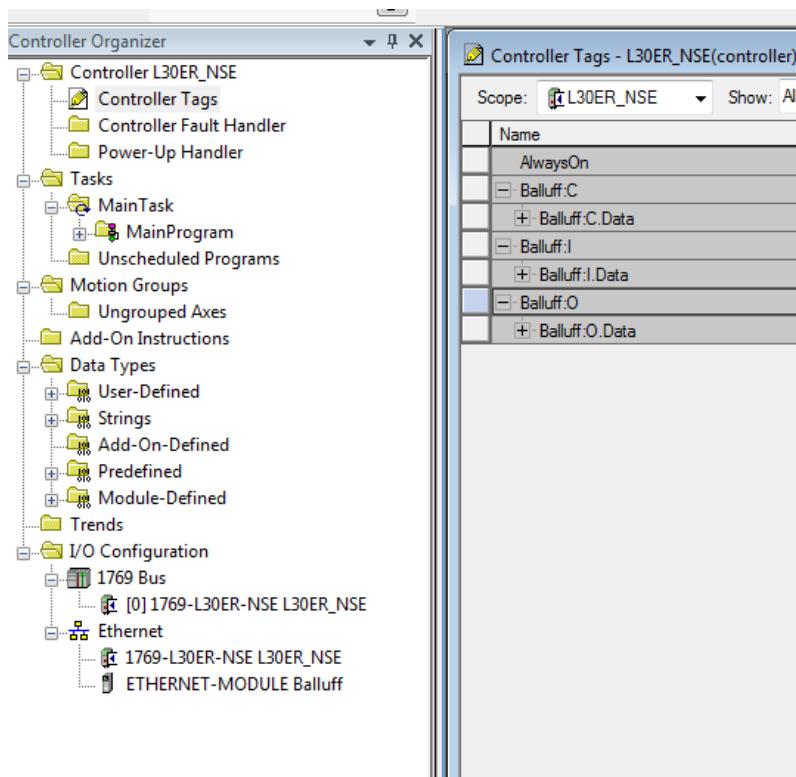

Input Table								
BYTE	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Allocated and Reserved	Allocated and Reserved	Allocated and Reserved					
1	Allocated and Reserved	Open Coil Status	Shorted Coil Status	Valve Power Status				
2	Open Coil Status, Coil No. 7	Open Coil Status, Coil No. 6	Open Coil Status, Coil No. 5	Open Coil Status, Coil No. 4	Open Coil Status, Coil No. 3	Open Coil Status, Coil No. 2	Open Coil Status, Coil No. 1	Open Coil Status, Coil No. 0
3	Open Coil Status, Coil No. 15	Open Coil Status, Coil No. 14	Open Coil Status, Coil No. 13	Open Coil Status, Coil No. 12	Open Coil Status, Coil No. 11	Open Coil Status, Coil No. 10	Open Coil Status, Coil No. 9	Open Coil Status, Coil No. 8
4	Shorted Coil Status, Coil No. 7	Shorted Coil Status, Coil No. 6	Shorted Coil Status, Coil No. 5	Shorted Coil Status, Coil No. 4	Shorted Coil Status, Coil No. 3	Shorted Coil Status, Coil No. 2	Shorted Coil Status, Coil No. 1	Shorted Coil Status, Coil No. 0
5	Shorted Coil Status, Coil No. 15	Shorted Coil Status, Coil No. 14	Shorted Coil Status, Coil No. 13	Shorted Coil Status, Coil No. 12	Shorted Coil Status, Coil No. 11	Shorted Coil Status, Coil No. 10	Shorted Coil Status, Coil No. 9	Shorted Coil Status, Coil No. 8

5. Configuration Example - Balluff Master

Example configuration with Balluff BNI EIP-508-105-Z015 IO-Link™ master and RSLogix 5000.


5.1 Connect the Aventics 580 IO-Link™ manifold

Connect the Aventics 580 IO-Link™ Module to one of the 8 Balluff module IO-Link™ ports. In this example; port 1 is connected using a 4 pin I/O cable.



5.2 Controller Tags (RSLogix 5000)

The following configuration example assumes the Balluff BNI EIP-508-105-Z015 IO-Link™ master has been configured using the Generic Ethernet Module as shown.

Once the Balluff IO-Link™ master module is configured in RSLogix 5000; open the modules' associated controller tags. In this example the module name is "Balluff".

5.3 Configure Port for IO-Link™

In the example below; the Balluff master uses the Balluff:C Data table to configure the function of each port based on the following table.

Byte	Slot	Module part	Description
0...1	1	Module	General configuration for the whole module
2...25	2	IO-Link port 0	Configuration for the IO-Link port 0
26...49	3	IO-Link port 1	Configuration for the IO-Link port 1
50...73	4	IO-Link port 2	Configuration for the IO-Link port 2
74...97	5	IO-Link port 3	Configuration for the IO-Link port 3
98...121	6	IO-Link port 4	Configuration for the IO-Link port 4
122...145	7	IO-Link port 5	Configuration for the IO-Link port 5
146...169	8	IO-Link port 6	Configuration for the IO-Link port 6
170...193	9	IO-Link port 7	Configuration for the IO-Link port 7

Byte	Bit								Description
	7	6	5	4	3	2	1	0	
0	P3		P2		P1		P0		Port function 0x00: Standard I/O 0x01: IO-Link
1	P7		P6		P5		P4		

Set Bit 0 of Byte 0 to configure Port 0 for IO-Link™ communication

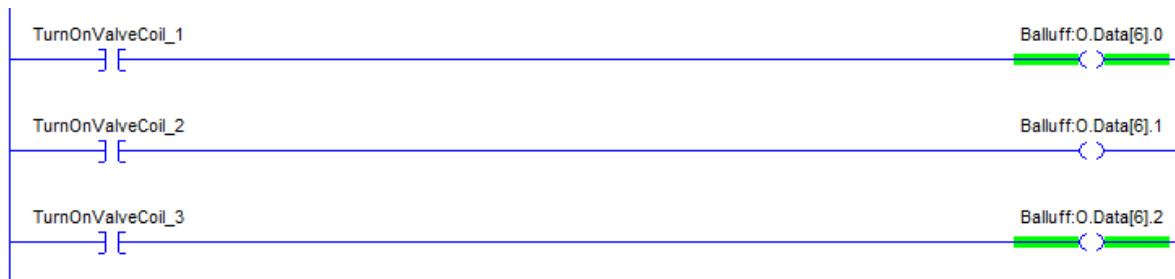
5.4 Enable valve power

In the example below; the Balluff master uses the Balluff:O Data table to turn on the output of Pin 2 to supply valve power to the Aventics 580 IO-Link™ module.

Byte	Module part	Description
0...5	Standard I/O ports	Process data outputs on standard Inputs
6...37	IO-Link port 0	Process data outputs on IO-Link port 0
38...69	IO-Link port 1	Process data outputs on IO-Link port 1
70...101	IO-Link port 2	Process data outputs on IO-Link port 2
102...133	IO-Link port 3	Process data outputs on IO-Link port 3
134...165	IO-Link port 4	Process data outputs on IO-Link port 4
166...197	IO-Link port 5	Process data outputs on IO-Link port 5
198...229	IO-Link port 6	Process data outputs on IO-Link port 6
230...261	IO-Link port 7	Process data outputs on IO-Link port 7

Byte	Bit								Description
	7	6	5	4	3	2	1	0	
0	O32	O34	O22	O24	O12	O14	O02	O04	Output data O04 → Output on port 0 pin 4 To use this function on a IO-Link port the port must be configured as an output (see 0- Module configuration)
1	O72	O74	O62	O64	O52	O54	O42	O44	

Set Bit 1 of Byte 0 to turn on Output 2 which supplies 24v valve power to the Aventics 580 manifold connected to port 1.



5.5 Control valve coil outputs

In the example below; the Balluff master uses the Balluff:O Data table to control the Aventics valve coils over IO-Link™. The 32 Valve coils are mapped from Byte 6 thru Byte 9.

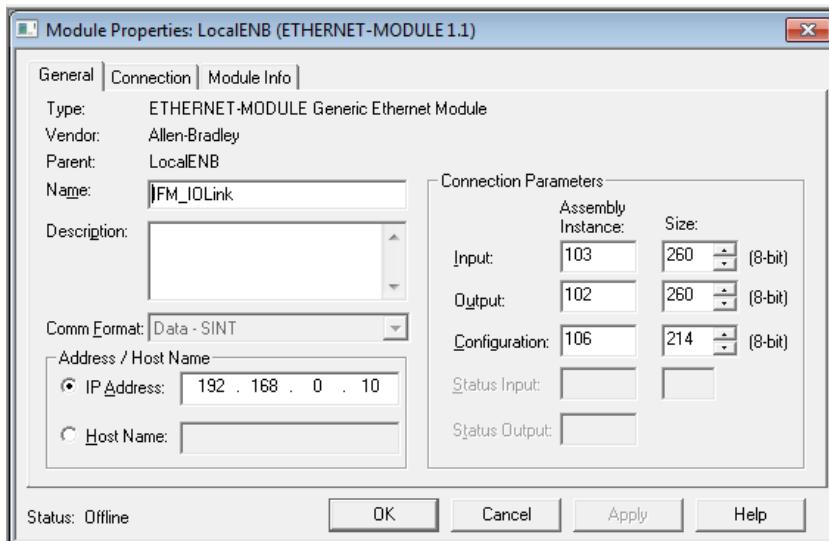
Byte	Bit								Description
	7	6	5	4	3	2	1	0	
6...37									IO-Link port 0 output data
...	The data of the other IO-Link ports has the same structure and follows here								

Set Bit 0, 1 & 2 of Byte 6 to turn on the valve coils 1, 2 & 3 on the Aventics 580 manifold connected to port 1. This is accomplished using IO-Link™ communication.

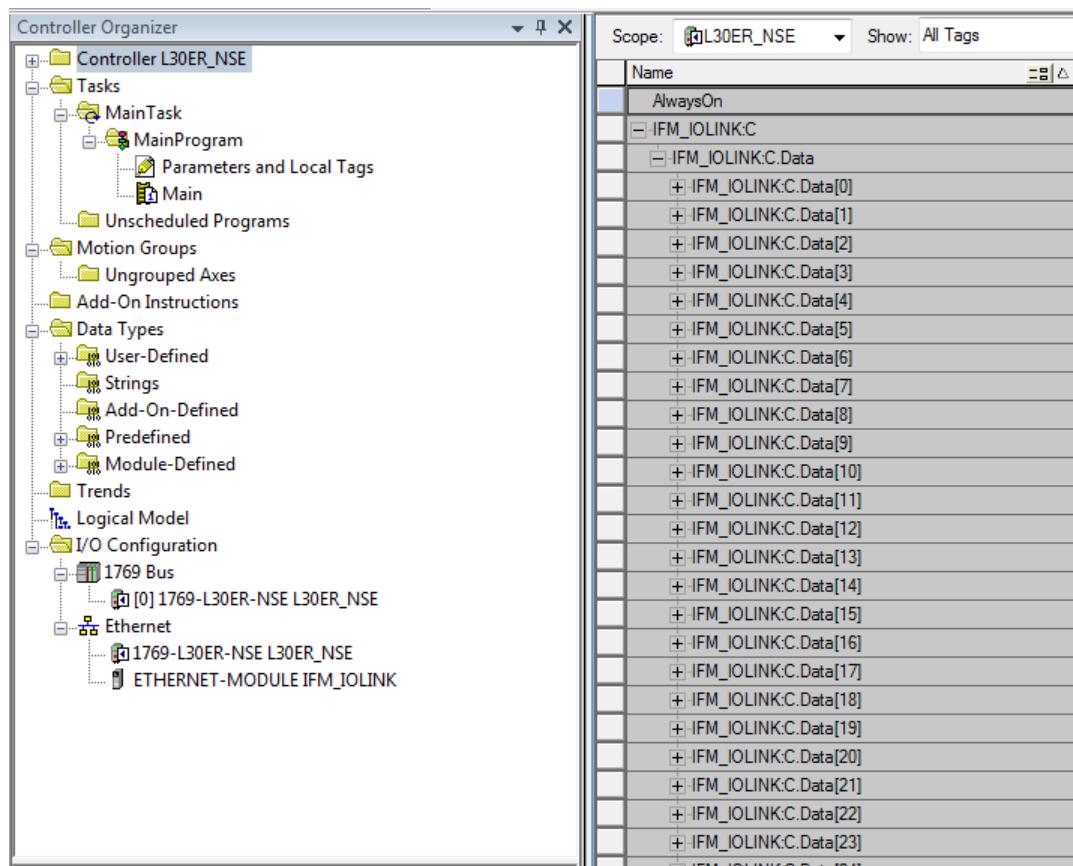


6. Configuration Example - IFM Master

Example configuration with IFM AL 1020 IO-Link™ master and RSLogix 5000.


6.1 Connect the Aventics 580 IO-Link™ manifold

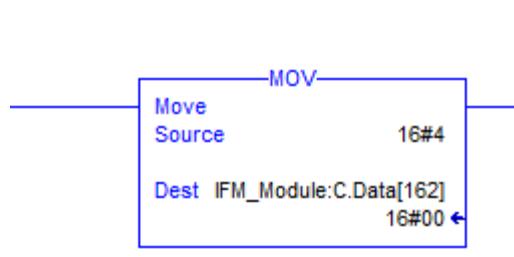
Connect the Aventics 580 IO-Link™ Module to one of the IFM module IO-Link™ ports. In this example; port #7 is connected using a 5 pin I/O cable.



6.2 Controller tags (RSLogix 5000)

The following configuration example assumes the IFM AL 1020 IO-Link™ master has been configured using the Generic Ethernet Module as shown.

Once the IFM IO-Link™ master module is configured in RSLogix 5000; open the modules' associated controller tags. In this example, the module name is "IFM_IOLink".


6.3 Configure port for IO-Link™

In the example below; the IFM master uses the IFM_IOLink:C Data table to configure the function of each port. The sixth byte of each ports 26 byte parameter group is used to control the port mode. Setting the sixth byte to a value of 4 enables the port for IO-Link™ functionality

Assembly instance 106

Byte	Data type	Function
0	UINT8	= reserved
1	UINT8	= reserved
2	UINT8	Fail-safe mode
3	UINT8	Fail-safe pattern DO pin 4
4	UINT8	= reserved
5	UINT8	= reserved
6	UINT8	Port mode port 1
7...8	UINT16	Vendor ID port 1
9...12	UINT32	Device ID port 1
13	UINT8	Data storage port 1
14	UINT8	IO-Link fail-safe mode port 1
15	UINT8	Enable direct parameter port 1
16...31	Array of 16 x UINT8	Direct parameter page 2 port 1
32...213	...	26 parameter bytes per port

For example, to configure Port 7 for IO-Link™ communication. Set Byte 162 of the parameter table defined by assembly instance 106 to the value 4. For more information refer to the IFM IO master documentation.

6.4 Control valve coil outputs

Assembly Instance 102

Byte	Function	Description
0...3	Control Byte	IO-Link™ master control bytes
4...35	IO-Link™ port 1 OUT	32 byte IO-Link™ output process data
36...67	IO-Link™ port 2 OUT	32 byte IO-Link™ output process data
68...99	IO-Link™ port 3 OUT	32 byte IO-Link™ output process data
100...131	IO-Link™ port 4 OUT	32 byte IO-Link™ output process data
132...163	IO-Link™ port 5 OUT	32 byte IO-Link™ output process data
164...195	IO-Link™ port 6 OUT	32 byte IO-Link™ output process data
196...227	IO-Link™ port 7 OUT	32 byte IO-Link™ output process data
228...259	IO-Link™ port 8 OUT	32 byte IO-Link™ output process data

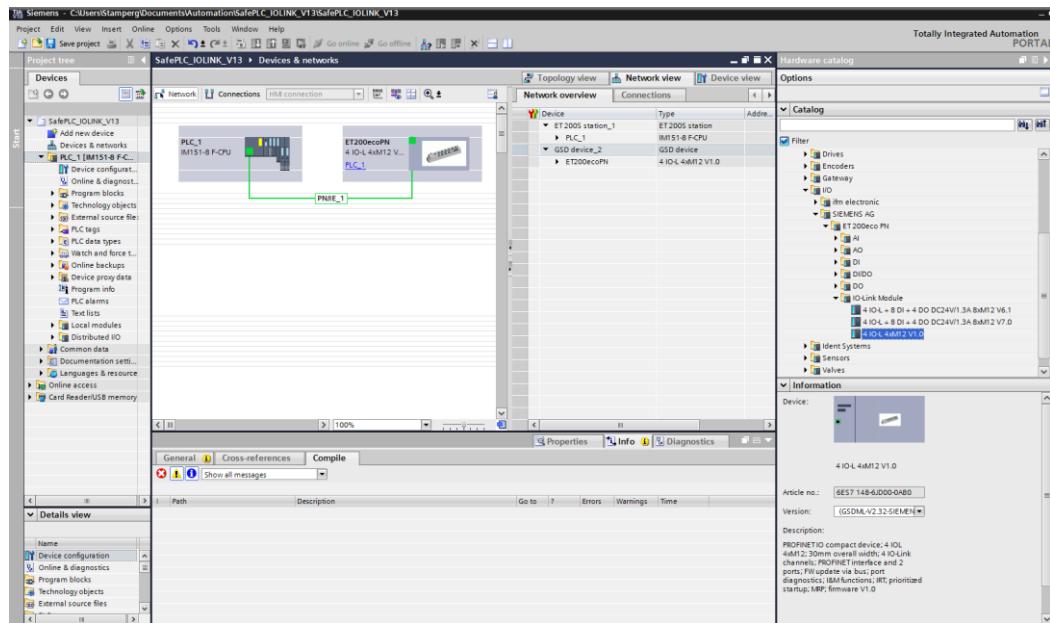
Set Bit 0 of Byte 196 in IFM_IOLINK DATA(196).0 to turn on Aventics 580 manifold valve coil #1.

IFM_IOLINK:O.Data[196]	1	Decimal	SINT	Byte 0 of Chan 7
IFM_IOLINK:O.Data[196].0	1	Decimal	BOOL	Byte 0 of Chan 7
IFM_IOLINK:O.Data[196].1	0	Decimal	BOOL	Byte 0 of Chan 7

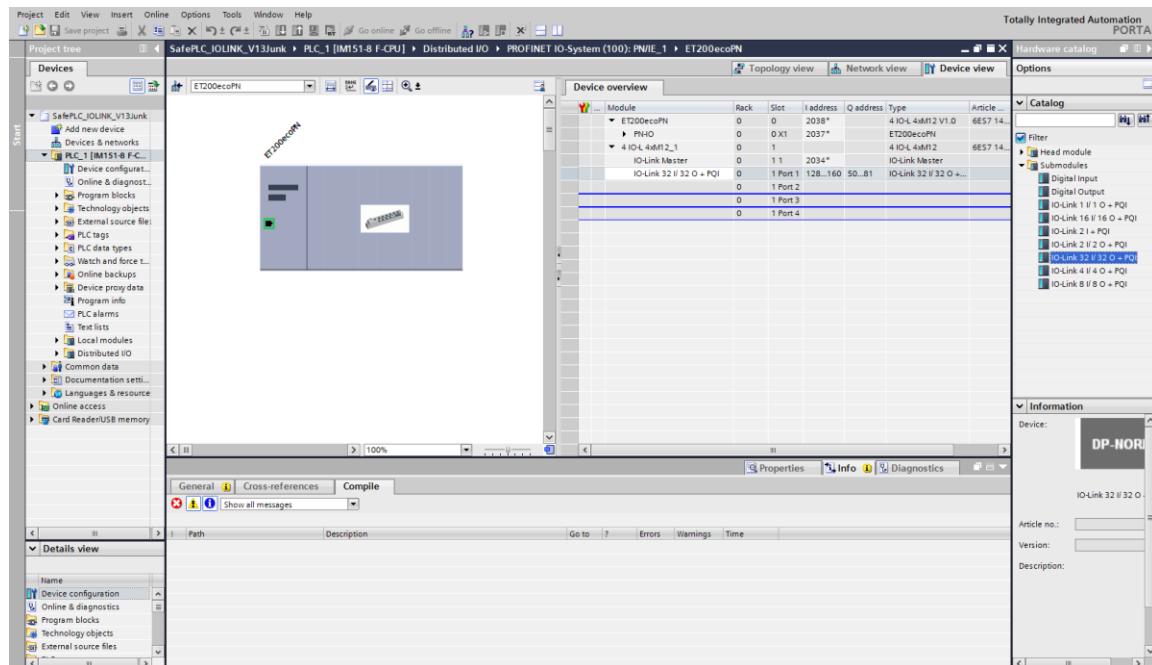

7. Configuration Example - Siemens Master

Example configuration for Siemens ET200 6EST 148-6JD00-OABO IO-Link™ master and TIA Portal V13 (SP1 Update 9)
The Aventics 580 IODD file is required to complete the configuration.

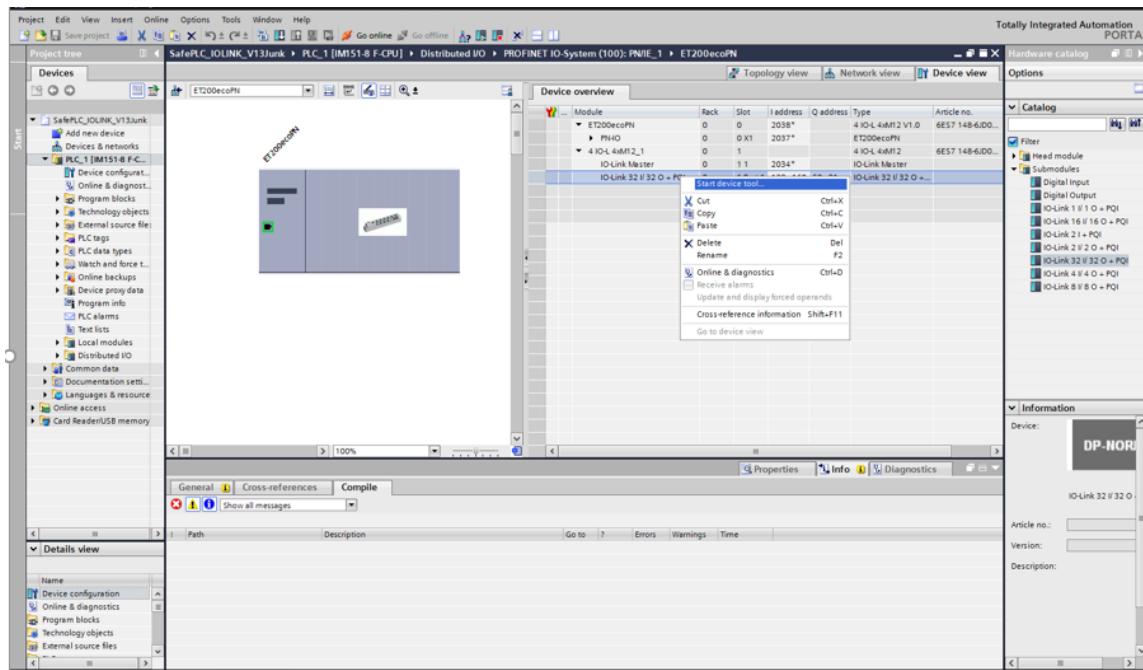
Download the IODD file at;
<http://www.asco.com/en-us/Pages/fieldbus-technical-document-search.aspx>

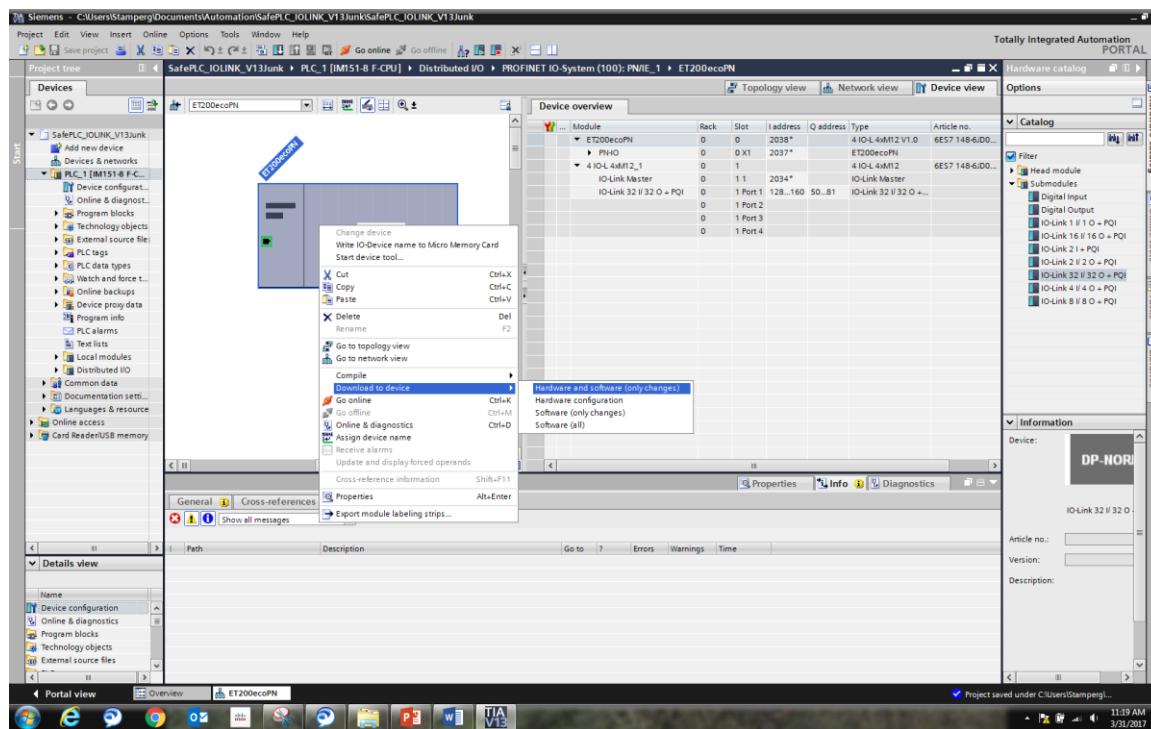

7.1 Connect the Aventics 580 IO-Link™ manifold

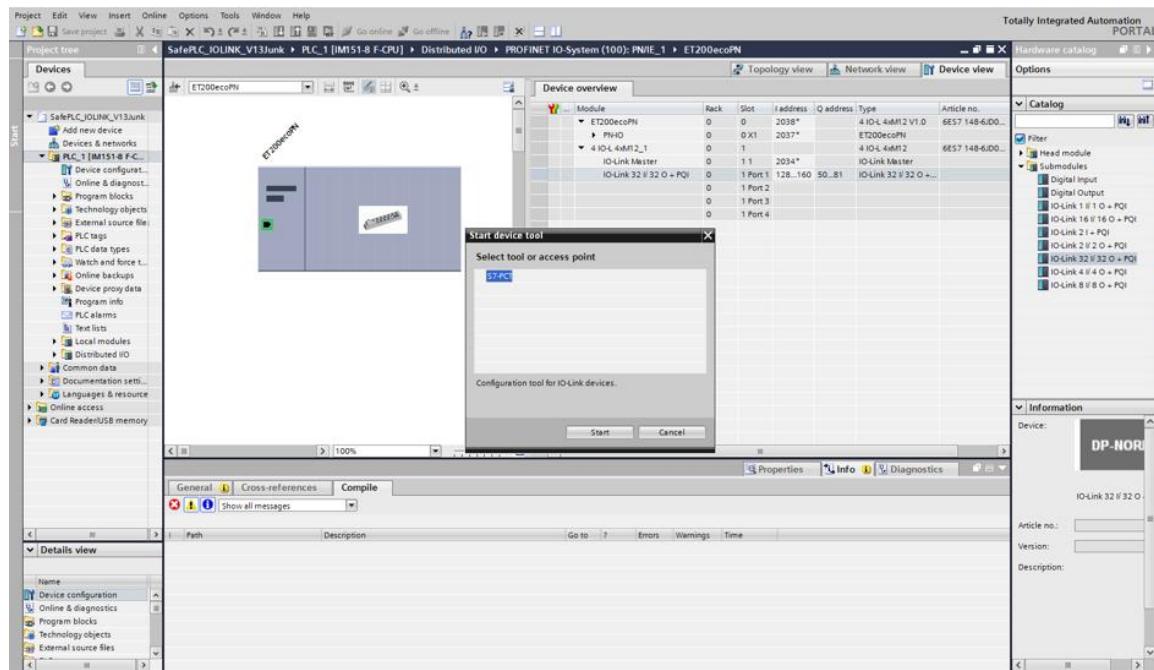
Connect the Aventics 580 IO-Link™ Module to the Siemens ET200 IO Link Master. In this example; port #1 is connected to a Type B IO link port using a 5 pin I/O cable.



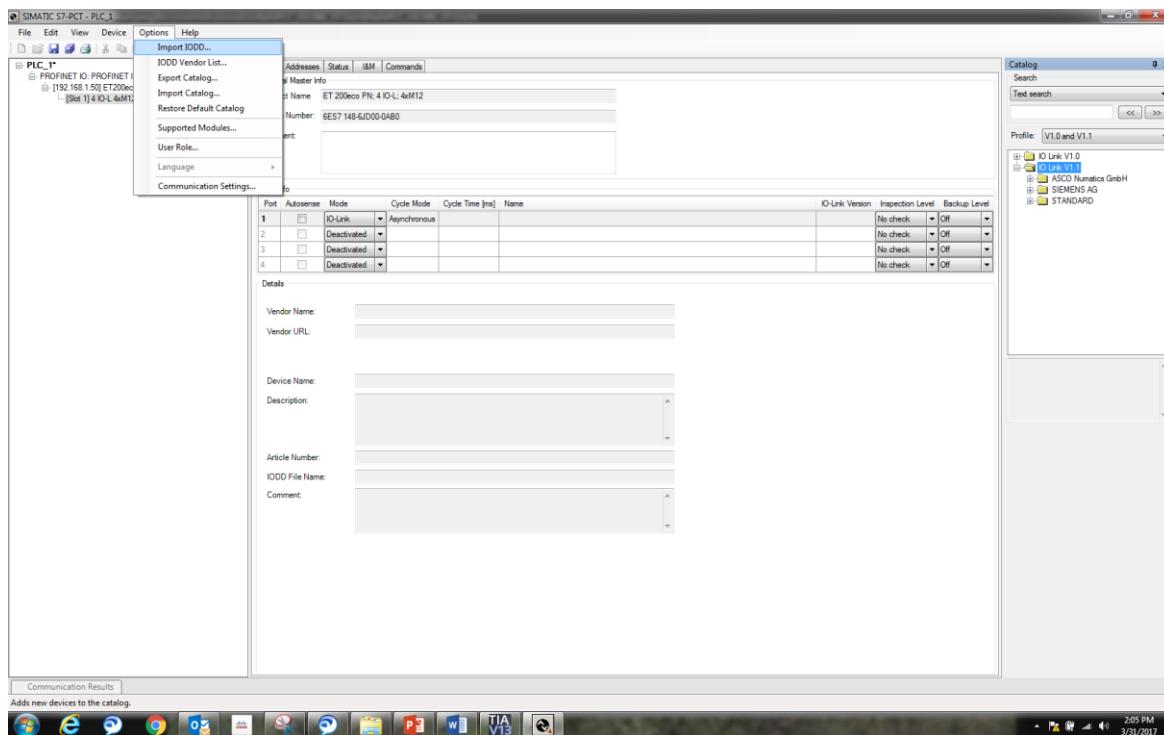
7.2 Create the PLC hardware configuration for the Siemens ET200 IO Link master.


From the PLC hardware configuration select the Siemens ET200 IO link Master Module and connect it to the PLC Profinet port

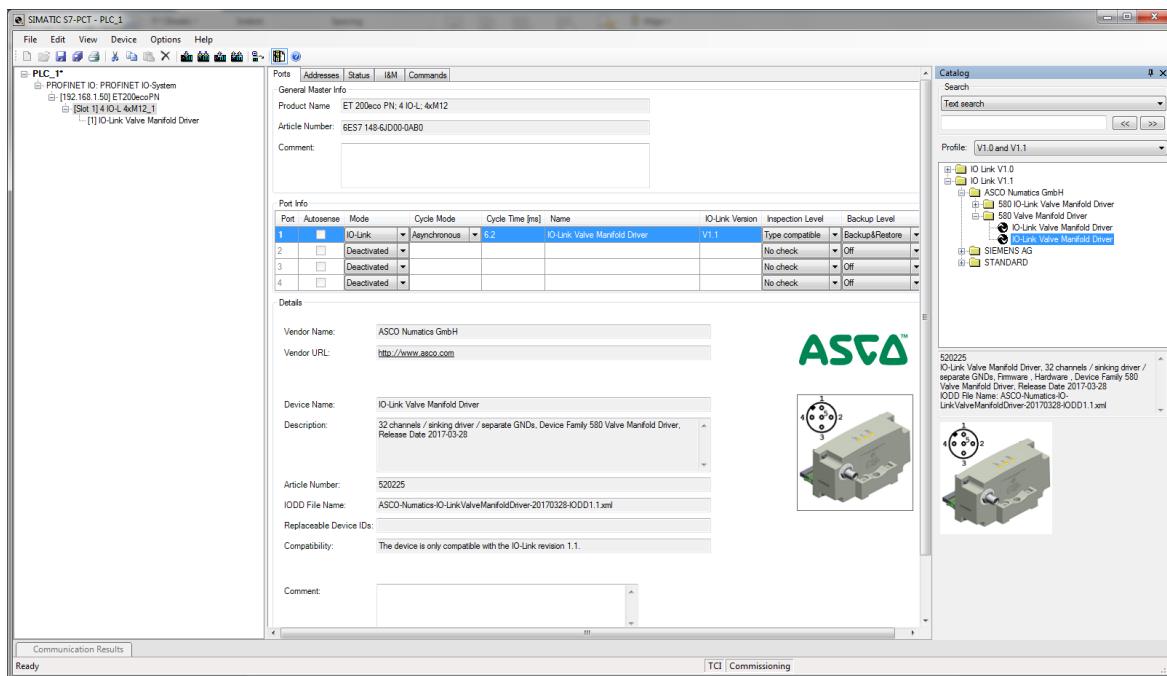

Open the ET200 Module and select IO-Link™ 32I/32O +PQI for the port that is connected to Aventics 580 manifold. Modify the input and output address ranges as necessary.


Select Port 1 (in this example) and right click. Select "Start device tool".

Save and download the configuration to the Siemens controller.



Select "S7PCT" to run the S7 Configuration Tool.

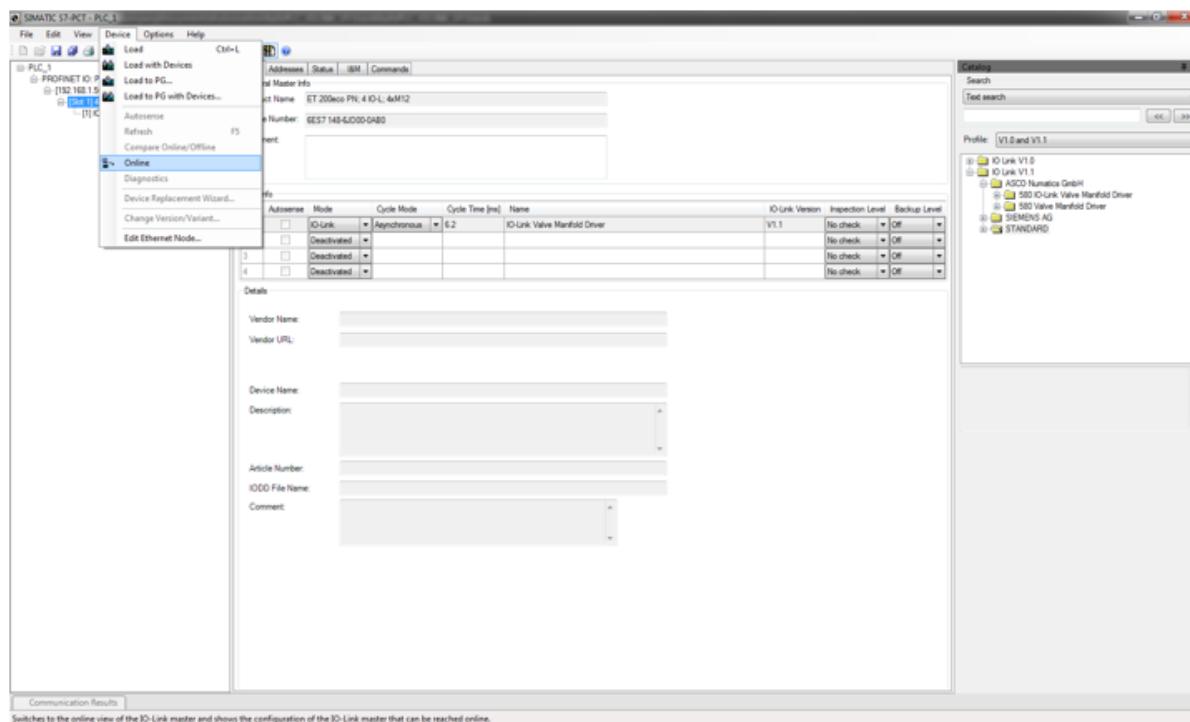


7.3 Install the Aventics 580 IO-Link™ IODD file.

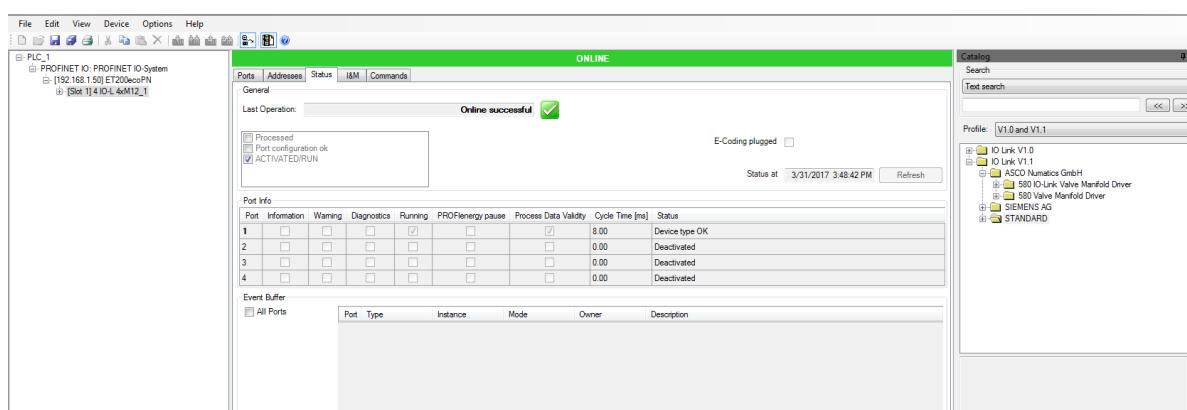
The IODD file for the Aventics 580 I-O link manifold can be found at;
Under the options tab select import IODD file

Once the IODD file is installed; select the Aventics 580 IO-Link™ Module from the IO-Link™ V1.1 folder

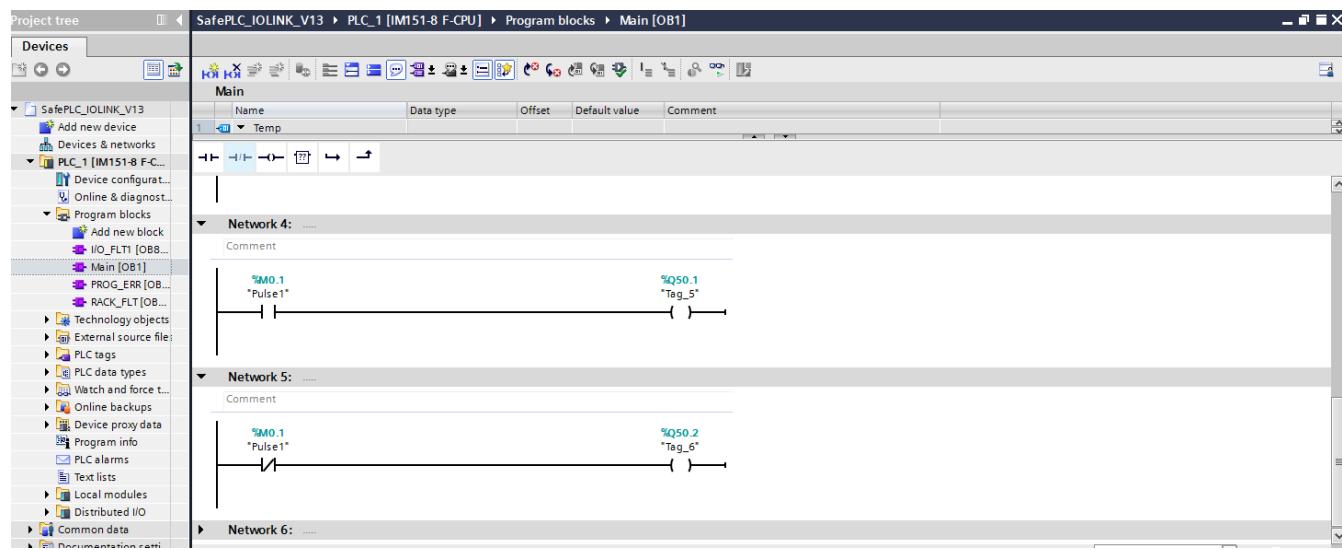
In this example the Type B (5 pin connection) was selected.



Change the "Type Compatible" and "Backup Procedure" attributes as shown


Port	Autosense	Mode	Cycle Mode	Cycle Time [ms]	Name	IO-Link Version	Inspection Level	Backup Level
1	<input checked="" type="checkbox"/>	IO-Link	Asynchronous	6.2	IO-Link Valve Manifold Driver	V1.1	No check	Off
2	<input type="checkbox"/>	Deactivated					No check	Off
3	<input type="checkbox"/>	Deactivated					No check	Off
4	<input type="checkbox"/>	Deactivated					No check	Off

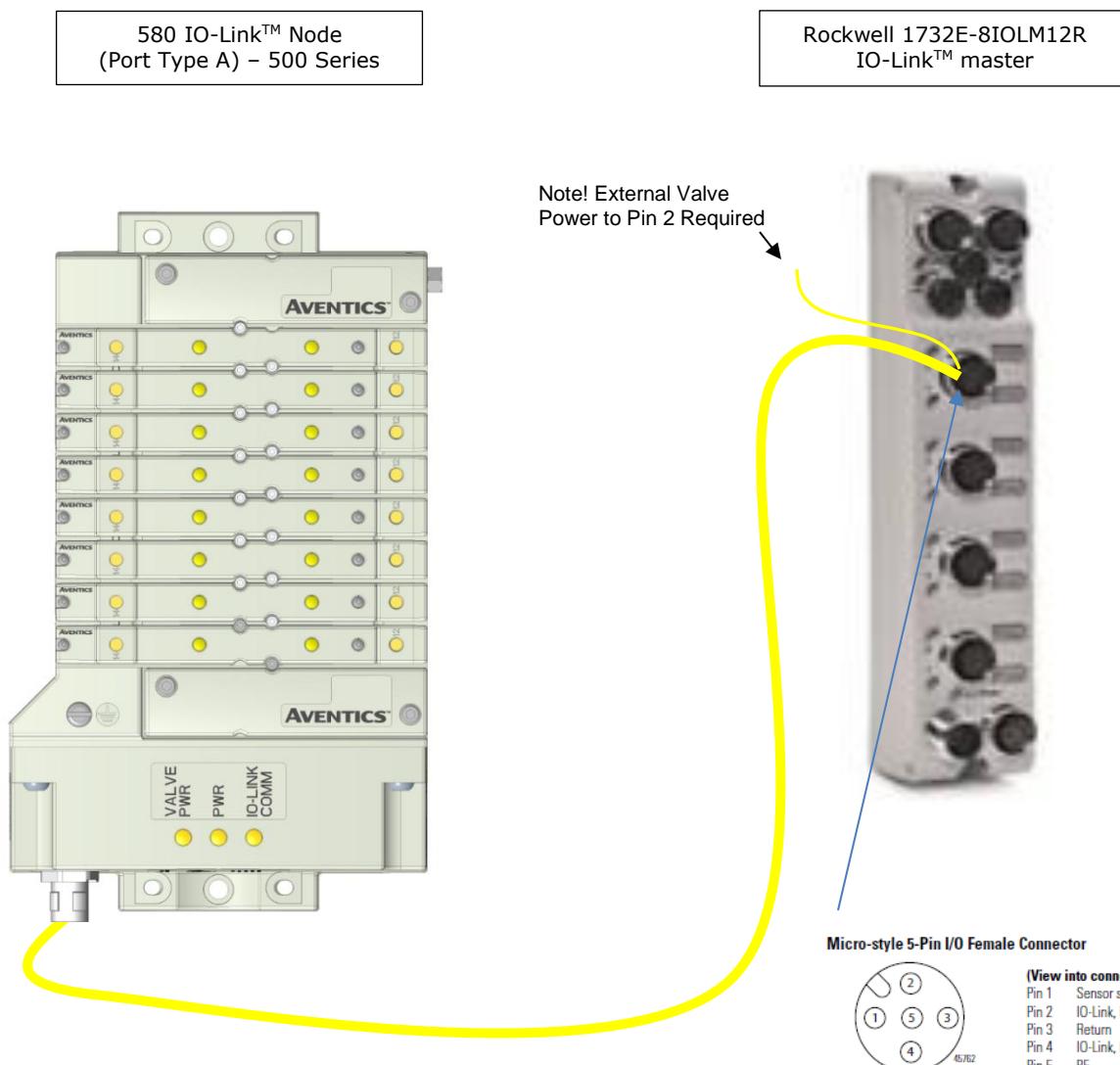
Select "Load" to download the configuration to the Siemens I-O Link master


Select "Online" to see the module status

Siemens master module status

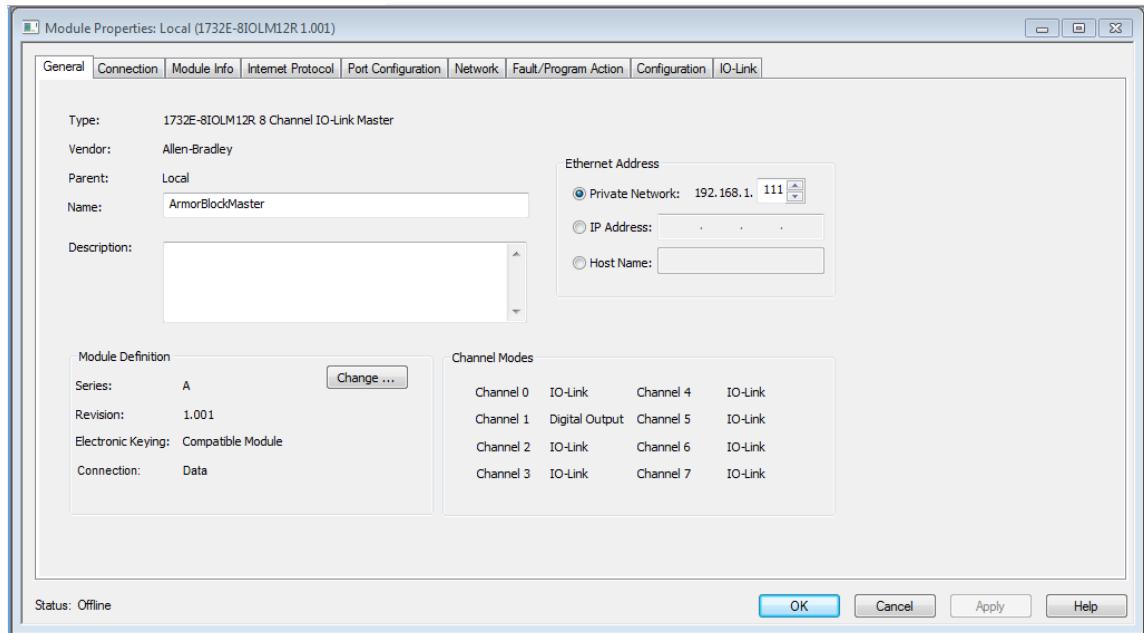
The module configuration is complete. The Aventics 580 valve outputs can be tested with PLC logic using the configured output addresses.

8. Configuration Example - Rockwell Master

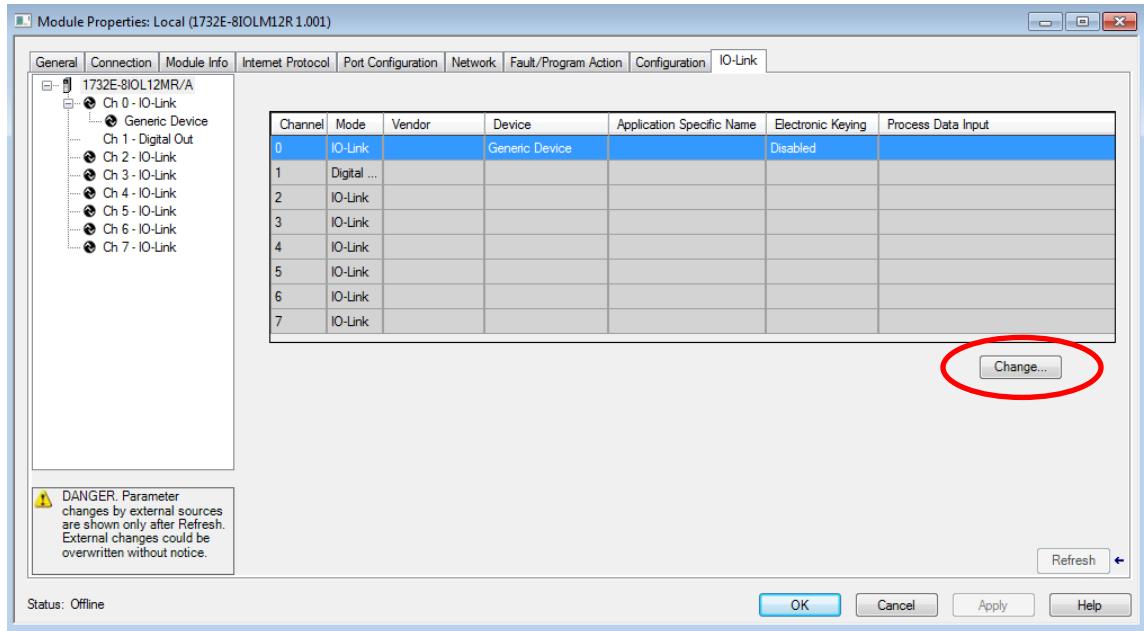

Example configuration for Rockwell 1732E-8IOLM12R IO-Link™ master and Rockwell Studio 5000 (v30)

8.1 Connect the Aventics 580 IO-Link™ manifold

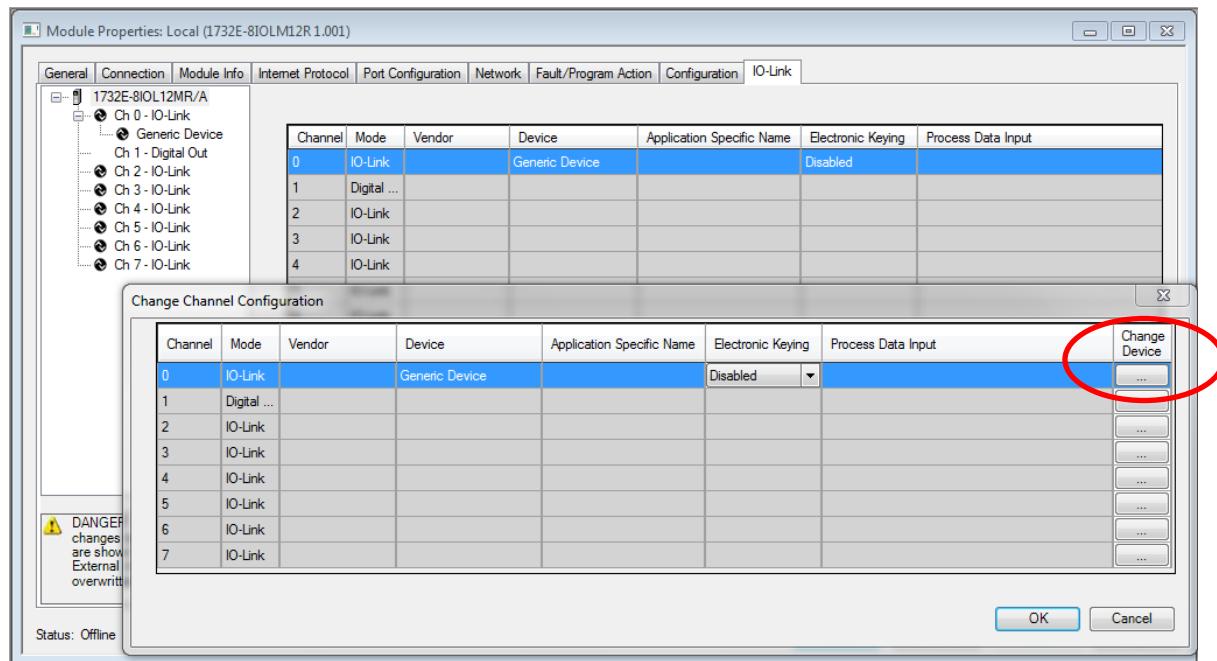
Connect the Aventics 580 IO-Link™ Module to the Rockwell IO Link Master. In this example; Channel 0 is connected to a Type A IO link port using a 4 pin I/O cable.

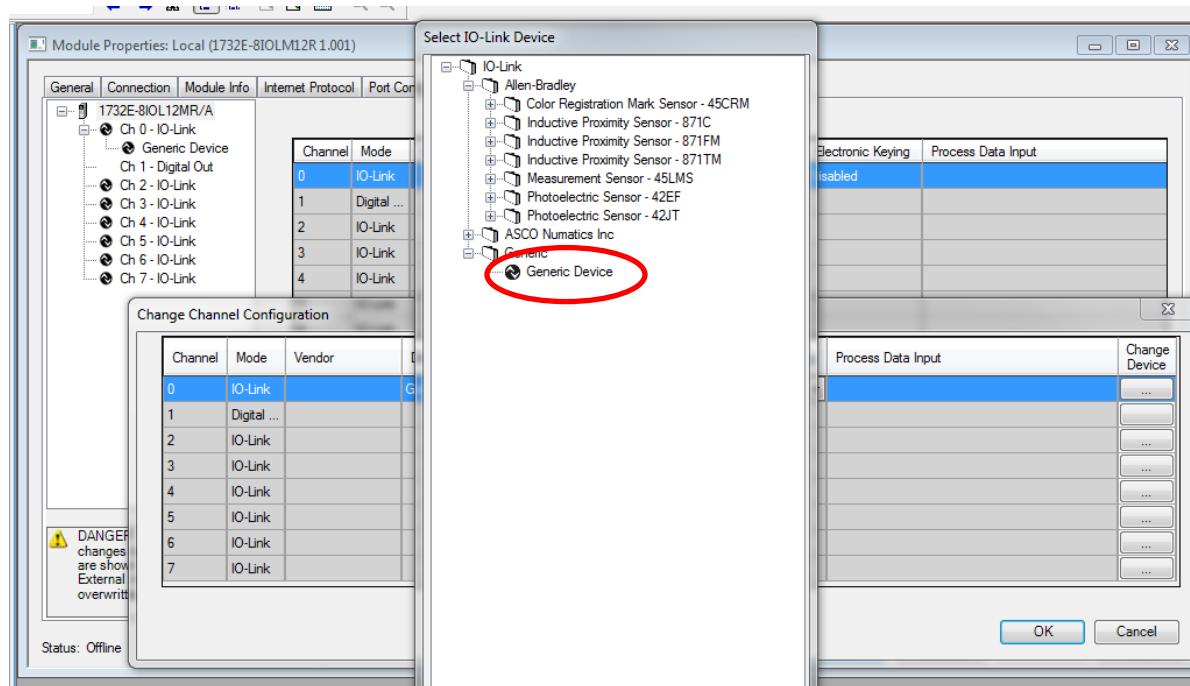

NOTE!

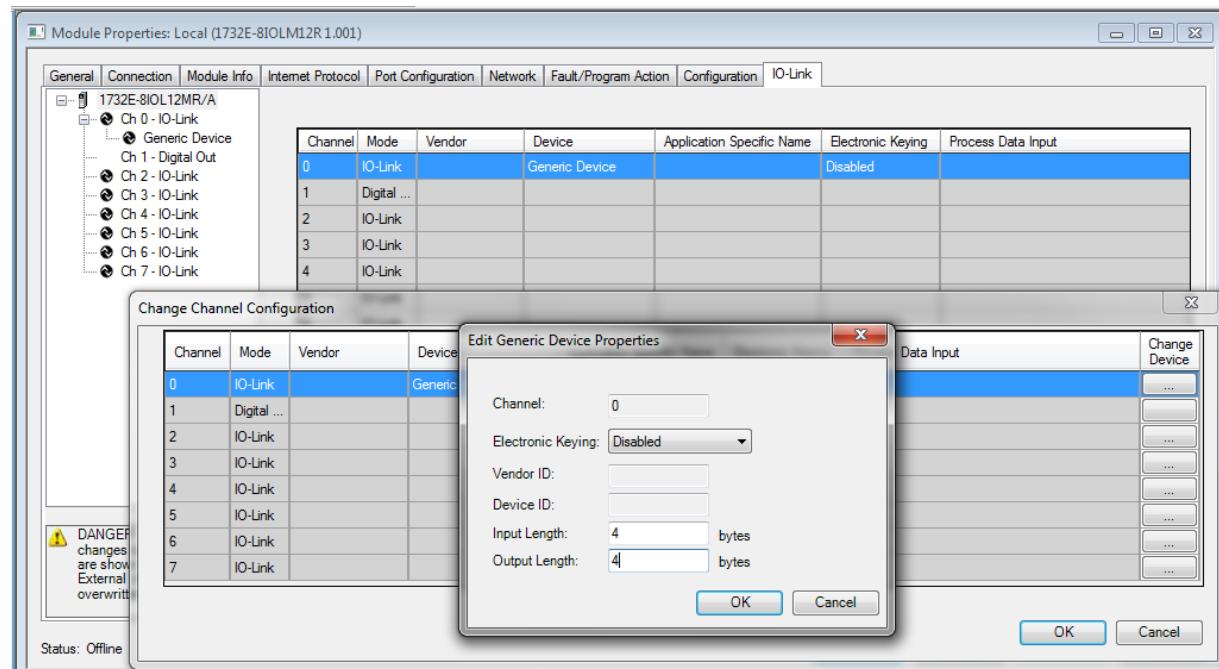
It is necessary to supply the 580 Valve Power (pin 2) externally since the Rockwell IO Link port's digital output (pin 2) is limited to 150mA max.



8.2 Create the PLC hardware configuration for the Rockwell 1732E-8IOLM12R IO Link™ master


Select the IO Link™ Master's Module Properties select the IO-Link Tab.


Select Change/Select IO-Link Tab


Select Change Device button for Channel 0

Select Generic Device

Select Electronic Keying to Disabled, Set Input and Output Length to 4 Bytes each. Save and download the configuration to the Rockwell controller.

The Armor Block Master's controller tags now identify four bytes of output data to control up to 32 coils on the 580 IO link manifold connected to Channel 0

ArmorBlockMaster:O.Ch0Data			SINT[4]
+ ArmorBlockMaster:O.Ch0Data[0]			SINT
+ ArmorBlockMaster:O.Ch0Data[1]			SINT
+ ArmorBlockMaster:O.Ch0Data[2]			SINT
+ ArmorBlockMaster:O.Ch0Data[3]			SINT

9. Appendix

9.1 System Specifications

Electrical	
Supply Voltage	Valves (501, 502, 503): 24 VDC + 10%, -15% Node: 24 VDC ± 10%
Current	Total current on the Power Connector ("Valves" and "Node" Pins) must not exceed 4 Amps.
Reverse Polarity	Reverse polarity protection is provided on both Node and Valve power.
Recommended External Fuse	External fuses should be chosen depending upon manifold configuration. Please refer to power consumption chart on page 3-15 for additional fuse sizing information.
Spike Suppression	Output spike suppression is internally provided for valve outputs.
Valve Solenoid Coil Output Drivers	Maximum 0.5 Amps per output. All output points are short circuit protected and have internal spike suppression.
Operating Temperature for Electronic Components	-10 to 115°F (-23 to 46°C)

9.2 Troubleshooting Communication Node

Symptom	Possible Cause	Solution
The wrong valve solenoid coils are being energized.	Z-Board™ type mismatch. Single Z-Board™ present where double Z-Board™ expected or vice versa.	Check that correct Z-Board™ types are installed.
Valve outputs do not energize.	Output power not present or connected improperly on Power connector.	Check for 24VDC on the +24 VDC (Valves) pin of the M12 Power connector of the 580 Node.

9.3 Technical Support

For technical support, contact your local Aventics distributor. If further information is required, please call Aventics Technical Support Department at (248) 596-3300.

Issues relating to network setup, PLC programming, sequencing, software related functions, etc. should be handled with the appropriate product vendor.

Information on device files, technical manuals, local distributors, and other Aventics, Inc. products and support issues can be found on the Aventics website at www.emerson.com